
PhD
THE

SIS
NN

T:2
024

UPA
SG0

71

A Game-Theoretic Approach to the
Study of Blockchain’s Robustness

PhD Thesis from Paris-Saclay University

PhD thesis prepared at the research unit LIST (CEA, Paris-Saclay University),
under the supervision of Sara TUCCI-PIERGIOVANNI, laboratory head,

and co-supervised by Yackolley AMOUSSOU-GUENOU, associate professor.

Thesis defended at Paris-Saclay, on November 5, 2024, by

Ulysse PAVLOFF

Jury Composition
Jury members with deliberative voting rights
Sonia BEN MOKTHAR Reviewer & Examiner
Director of Research, LIRIS CNRS
Sébastien TIXEUIL Reviewer & Examiner
University Professor, Sorbonne University
Sylvain CONCHON Jury President & Examiner
University Professor, Paris-Saclay University
Daniel AUGOT Examiner
Director of Research, INRIA
Sophie CHABRIDON Examiner
Professor, Telecom SudParis



Title: A game-theoretic approach to the study of Blockchain’s Robustness
Keywords: Blockchain, Ethereum, Distributed Systems, Game Theory

Abstract
Blockchains have sparked global interest in
recent years, gaining importance as they
increasingly influence technology and fi-
nance. This thesis investigates the robust-
ness of blockchain protocols, specifically
focusing on Ethereum Proof-of-Stake. We
define robustness in terms of two critical
properties: Safety, which ensures that the
blockchain will not have permanent con-
flicting blocks, and Liveness, which guaran-
tees the continuous addition of new reli-
able blocks.

Our research addresses the gap be-
tween traditional distributed systems ap-
proaches, which classify agents as either
honest or Byzantine (i.e., malicious or
faulty), and game-theoretic models that
consider rational agents driven by incen-
tives. We explore how incentives impact
the robustness with both approaches.

The thesis comprises three distinct

analyses. First, we formalize the Ethereum
PoS protocol, defining its properties and
examining potential vulnerabilities through
a distributed systems perspective. We
identify that certain attacks can undermine
the system’s robustness. Second, we ana-
lyze the inactivity leak mechanism, a crit-
ical feature of Ethereum PoS, highlighting
its role in maintaining system liveness dur-
ing network disruptions but at the cost of
safety. Finally, we employ game-theoretic
models to study the strategies of rational
validators within Ethereum PoS, identify-
ing conditions under which these agents
might deviate from the prescribed protocol
to maximize their rewards.

Our findings contribute to a deeper un-
derstanding of the importance of incen-
tivemechanisms for blockchain robustness
and provide insights into designing more
resilient blockchain protocols.





“Our time is such that those who feel certainty are stupid, while those with
any imagination and understanding are filled with doubt and indecision."

- Bertrand Russell
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Reading tips

Throughout the manuscript, every text in purple can be clicked to navigate to
the indicated reference. Footnotes function in this manner as well1. Moreover,
citations are in blue and offer the same ability to take you back to the place of
the citation in the text by clicking on the page number at the end of the citation
[APM+23].

1 ↑ Clicking on the footnote’s number will return you to the place of the footnote in the text.
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Contents
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I.2 Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I.2.1 Bitcoin’s Solution . . . . . . . . . . . . . . . . . . . . . . . . 5
I.3 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I.6 Related Work on Blockchain Analysis . . . . . . . . . . . . . . 13

I.6.1 Blockchain Formalization . . . . . . . . . . . . . . . . . . . 13
I.6.2 Attacks and Vulnerabilities . . . . . . . . . . . . . . . . . . 14
I.6.3 Rational Agents in Blockchain . . . . . . . . . . . . . . . . 15

T
he first block of the Bitcoin blockchain, the genesis block, contains a mes-
sage taken from the title of the January 3, 2009 edition of The Times news-
paper:"Chancellor on brink of second bailout for banks". This statement serves

as a powerful symbol of what Bitcoin set out to challenge: a flawed financial sys-
tem that has proven to be unworthy of trust. Since then, blockchain technology
has gained significant recognition and ignited widespread interest. To build a bet-
ter understanding and start with a clear foundation of blockchains, we begin by
outlining the core principles and essential knowledge for an informed discussion
about blockchains.

Before explaining blockchains, let us be clear that blockchain and cryptocur-
rencies are different. Cryptocurrency is one application allowed by blockchains,
but blockchains can be much more and this distinction is important.

I.1 . Blockchain

Blockchain technology has revolutionized how we think about data storage,
ownership, and decentralized systems. To better understand this technology, we
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break it down into three key components: what it achieves, how it functions, and
its potential applications.

I.1.1 . Functionalities

We begin with the functionalities brought by blockchains. What new capabili-
ties does it offer that did not exist before? A simple way to describe blockchains
is to say that a blockchain is a decentralized computer. Like a traditional com-
puter, you can store data and run programs on it. The difference lies in its decen-
tralized nature: it has no single owner or operator.

Imagine a global computer that anyone can access and use to store data and
run programs without restriction, this is the promise of blockchain technology.
One interesting feature of blockchain is that, paradoxically, it is possible to create
a strong sense of ownership over digital data on this public computer. Nakamoto
first demonstrated that it was possible to enforce property rights over digital data
with Bitcoin. His solution focused on digital currency, but this concept can be
applied to any type of digital data stored on this decentralized "computer in the
sky."

I.1.2 . Implementation

The implementation refers to how the functionalities are accomplished. What
are the technological building blocks necessary to create this solution? This part
is the most fascinating one, as it is where most of the research is conducted, and
this manuscript is no exception.

Similar to how advancements in hardware have improved global communica-
tion and enabled new internet applications, blockchain technology is evolving.

The essential components used to build blockchains are:
• Consensus Mechanism: These are algorithms that enable the distributed
network to agree on the state of the blockchain. Bitcoin uses Proof-of-Work,
also called Nakamoto Consensus. Other mechanisms exist, such as Proof-of-
Stake and Byzantine Fault Tolerance.

• Cryptography: This branch of mathematics is essential for permitting own-
ership in a public environment through digital signatures. Cryptography is
the backbone of blockchain’s security, ensuring that transactions and data
remain private, secure, and verifiablewithout a central authority. Numerous
cryptographic tools are used in blockchain. One of these tools is the hash-
ing, which provides a unique fingerprint for any data. Cryptography is the
reason why cryptocurrencies—currencies that use blockchains—are named
this way.

• Distributed Ledger: This is the distributed database that maintains a con-
tinuously growing list of records, called blocks, literally the chain of blocks. In

2



practice, this data is stored by every node, which are the computers working
to maintain the blockchain. The consensus mechanism ensures that nodes
agree on the data stored.

Research on blockchains aims to improve and create new solutions for any of
these components. Our work focuses on the consensus mechanism.

I.1.3 . Purpose

Now, the infamous question: “Okay, but what for?” Working in blockchain re-
search, this might be the question I hear the most, even more than “What are
blockchains?”

There are already compelling answers, ranging from traceability and decen-
tralized money to digital ownership of goods and art. However, this is only the
beginning. As of the writing of this manuscript, blockchain has existed since 2009,
about 15 years. What would the answer to this question have been for the inter-
net 15 years after its development? At that time, the internet was mostly used for
emails, you could send files, albeit very slowly, and web pages were still in their
infancy. Now, the internet’s applications are almost limitless.

We are 15 years past the first use case of blockchain, it has only just begun.
Like the internet, the reasons for using blockchain will become more numerous
as time goes on. Just as the internet’s potential became clearer over time, so too
will blockchain applications expand and evolve.

The most well-known application of blockchain, cryptocurrency, which can be
seen as decentralized money, is often deemed useless in the Western world. We
in Western countries might not see the immediate need. However, millions of
people in countries where the value of money is decreasing daily, where banks
refuse to return what should be their money, have found value in blockchain.
Blockchain provides a solution to actually own your money and use it without
intermediaries.

While these issuesmay not resonatewith everyone now, asmore people begin
to understand and experience the benefits of true digital ownership and decen-
tralized finance, the value of blockchain will become increasingly evident.

Understanding blockchain’s functionalities, implementation, and potential ap-
plications is crucial as we continue to explore and refine this transformative tech-
nology. In the following section, we delve into the history of the first blockchain:
Bitcoin.

I.2 . Bitcoin
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Bitcoin was described in a 2008 paper [Nak08] and implemented in 2009 by a
mysterious author known as Satoshi Nakamoto. The technological components
necessary to create Bitcoin had actually existed for about 15 years before its ap-
pearance. However, no solution had been found to make a system both decen-
tralized and resistant to Sybil attacks and double spending which we detailed be-
low. In this section, we will provide a historical overview of how Bitcoin came into
existence and how it works.

Bitcoin answers the question: "How do you build a trustless system with an
unknown number of participants?". The difficulty lies in the consensus mecha-
nism required to make participants agree without knowing the number of partic-
ipants. The problem of reaching consensus with a known number of participants
has been addressed by the distributed systems field, notably through the Byzan-
tine Generals Problem [LSP82].

Several challenges arisewhen trying to create decentralized digitalmoney. The
first challenge is preventing double spending.
Double spending. Amajor problem for digital money is that digital information
can be copied effortlessly. Unlike a physical coin, which can only exist in one place
at a time, digital assets can be copied, potentially allowing the same digital coin to
be spent multiple times.

If you rely on a centralized authority such as a bank, this problem does not
exist. The bank being the sole entity keeping track of your balance and autho-
rizing transactions, it can prevent you from spending more than you own. This
problem led the first digital money, eCash, to rely on banks for this very reason.
David Chaum founded Digicash in 1989, building on the work in [CFN88], which
enhanced his earlier work [Cha82].

To mitigate this issue in a decentralized system, one solution is to have the
participants vote on the state of balances after each transaction. However, this
leads to the second problem:
Sybil attack. A common issuewhen trying to reach consensuswith an unknown
set of participants is that some individuals could create multiple identities to in-
crease their voting power, thereby gaining anunfair advantage in decision-making.
This type of attack is called a Sybil attack, named after the book Sybil by Schreiber,
which tells the story of a woman with dissociative identity disorder who experi-
enced having 16 different personalities.

Voting is crucial in a decentralized system, and several solutions prior to Bitcoin
struggled with this problem. One such solution was Wei Dai’s b-money, proposed
in 1998 [Dai98]. The ideas behind b-money are similar inmanyways to Bitcoin, but
to achieve consensus, Dai proposed using a fixed set of ‘trusted’ servers to keep
track of balances. However, choosing and trusting these servers contradicts the
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principle of decentralization. We have an email from Satoshi Nakamoto to Wei
Dai, sent in 2008, that reads:
“I was very interested to read your b-money page. I’m getting ready to release
a paper that expands on your ideas into a complete working system. Adam
Back (hashcash.org) noticed the similarities and pointed me to your site.”
Another problem mentioned by Dai in the b-money text is the fairness in the

distribution of newly createdmoney. WhileDigicash andb-money laid the ground-
work for digital currencies, it was Bitcoin that finally solved the key issues, enabling
the creation of a fully decentralized and secure currency system. The solution
found by Nakamoto actually uses the work of Adam Back: the Proof-of-Work.

I.2.1 . Bitcoin’s Solution

Bitcoin’s solution to the problemsof double spending and Sybil attacks is Proof-
of-Work (PoW). In 1992, a proposal to use a form of proof of work was presented by
Dwork and Naor [DN92] as an anti-spam mechanism. They suggested requiring
proof of computational work to send an email in order to prevent spam. Adam
Back proposed a similar idea in 1997 [Bac97] and further developed it in 2002
[Bac02], this time using cryptographic hashes. Let us explain PoW and hashes in
more detail.
Hash. A hash function is a cryptographic tool that creates a unique fingerprint
for data. It takes any amount of data, scrambles it, and returns a short and unique
result for that data.1 Hash functions possess several desirable properties:

• Deterministic: For a given input, the function will always produce the same
hash output.

• Irreversible: Also known as pre-image resistance, this property ensures
that given a hash value, it should be computationally infeasible to reverse-
engineer the original input. The hash function is a one-way function.

• Avalanche effect: Slightly different inputs should produce wildly different
hash outputs.

• Collision resistance: This property ensures that two different inputs do not
produce the same hash output.

Now that we understand what a hash function is, we can explain the Bitcoin
blockchain and its PoW mechanism.

1 ↑ To experience hash functions interactively, you can try this instructive website: online-SHA-
256.
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Block Header

Previous Block Hash
Merkle Root

Timestamp
Nonce

TXID: 0x123abc...
TXID: 0x456def...
TXID: 0x789ghi...
TXID: 0xabc123...
TXID: 0xdef456...
TXID: 0xghi789...

Figure I.1: Simplified representation of a Bitcoin block.

Bitcoin is a distributed computer focused on saving data about digital money
and transactions. To achieve this, blocks containing transactions are regularly
added and saved by every participant. The order of these blocks is crucial since it
serves as a historical record of transactions. It is important to verify that someone
has received 10 bitcoins before they can spend them. Each block has a structure
similar to the simplified representation shown in Figure I.1.
Bitcoin Block. Each block contains a block header that summarizes its informa-
tion. The block header includes:

• Previous Block Hash: This links the blocks in order by referring to the hash
of the preceding block, its unique fingerprint.

• Timestamp: The time at which the block was created.
• Merkle Root: The hash of the combined transactions (tx) in the block. This
provides a single fingerprint representing all the transactions included in the
block.

• Nonce: A ‘number used once’ that is useful for the Proof-of-Work mecha-
nism, explained below.

With this information, we can understand how Proof-of-Work operates.
Proof-of-Work (PoW). To add anewblock to the blockchain, the hashof its block
header must begin with x zeros. For instance, if x = 3, the hash must start with
three zeros, e.g., 00019... where only the first three digits matter. Since hash func-
tions produce unpredictable results, the block proposer must generate many dif-
ferent blocks to find one whose hash starts with the required number of zeros.
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The probability of achieving a hash starting with three zeros is low, approximately
0.001. Therefore, successfully producing such a block serves as proof that a sig-
nificant amount of computational work has been done.

The participants searching for valid blocks are called miners. They generate
numerous blocks by slightly modifying the nonce field in the block header, hoping
to find a hash that meets the requirements. The value of x, which determines the
difficulty of mining a block, varies such that a valid block is found approximately
every 10 minutes. As more people mine for blocks, the value of x, the difficulty,
increases. It is as if, while mining for gold in your own cave, you would find gold
more easily when fewer people are mining for gold elsewhere and vice-versa.

Miners search for blocks and build on top of previous ones, but what happens
if two miners find valid blocks simultaneously and attempt to add them to the
blockchain at the same time?
Fork choice rule. When several blocks share the same parent—meaning they
reference the same previous block hash—we encounter a fork. When multiple
branches exist, the rule prescribedbyNakamoto is to build on the longest branch2,
the one with the most blocks. If the branches are of the same length, you should
add blocks to the one you saw first until, eventually, one becomes the longest.
“Each nodemust be prepared to maintain potentially several ’candidate’ block
chains, each of which may eventually turn out to become the longest one, the
one which wins. Once a given block chain becomes sufficiently longer than a
competitor, the shorter one can be deleted.” - Hal Finney [Fin08]
PoW solves all the problems of a decentralized computer. As stated in the

Bitcoin white paper—the initial document explaining its functionality:
“The longest chain not only serves as proof of the sequence of events wit-
nessed, but proof that it came from the largest pool of CPU power. As long
as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they’ll generate the longest chain and outpace attackers.”
Thus, double-spending for a transaction becomes less likely asmore blocks are

built on top of the block containing the transaction. The current rule of thumb is to
wait for six blocks to be built after a block to trust the transactions in it. This way, it
is very unlikely that a new branch will appear and become the rightful chain while
possibly excluding the transaction. The Sybil attack problem is solved by making
one vote equal to one CPU. A miner cannot mine (or vote) on different chains at

2 ↑ In reality, the rule is to build on the branch of blocks that has consumed the most energy to
build. In practice, this almost always corresponds to the longest chain.
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the same time. Every unit of energy used to search for a block on one chain is
energy that cannot be used to search for a block on another chain. By making
one CPU equal to one vote, as long as the majority of CPUs are owned by honest
participants, malicious actors cannot control the network3.

This clever mix of PoW and the longest chain rule is known as the Nakamoto
Consensus. The chain with the most accumulated proof of work (i.e., the longest
chain) is considered the valid one. As blocks are built upon and become older,
they become increasingly less likely to be reverted. This concept is known as prob-
abilistic finality, where a finalized block is one that will permanently remain in the
chain.

I.3 . Ethereum

After Bitcoin showed the way, more and more blockchains began to emerge.
Theoneweare interested in, andwhich is the focus of thismanuscript, is Ethereum.

In 2011, a young boy named Vitalik Buterin stumbled upon Bitcoin and found
the idea fascinating. He fell down the rabbit hole and started to learn more about
it. Around that time, he co-foundedBitcoinMagazine. After realizing that blockchains
could offer more than just digital money, he tried to convince the community to
improve Bitcoin. However, Bitcoin is very conservative and slow when it comes
to changes. He then embarked on a mission to convince people to help him cre-
ate a new blockchain—one that wasn’t centered around a single application, such
as cryptocurrency, but rather for any purpose, leaving the freedom to its users
to decide how to use it. After gathering like-minded individuals interested in his
project, they created Ethereum [But14] in 2014.

Unlike Bitcoin, which is designedprimarily for one application—digitalmoney—Ethereum
is a general-purpose blockchain. Ethereum is an open platform that allows peo-
ple to build their own applications on top of it. Anything built on Ethereum is
protected and secured, with every transaction checked by the entire network of
millions of computers around the world that protect and verify every transaction
on the blockchain.

Ethereum started as a PoW blockchain, with a fork choice rule similar to that
of Bitcoin. From the start, the plan was to eventually transition to a different type
of consensus called Proof-of-Stake (PoS).
Proof-of-Stake (PoS). The concept of PoS actually originated from a 2011 post
on the BitcoinTalk forum [Qua11]. The post included the following thought:

3 ↑ The case in which a majority of CPUs are owned by malicious actors is referred to as the 51%
attack. Similar to democratic systems in general, if the majority agrees, the decision is theirs.
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“I amwondering if as bitcoins becomemorewidely distributed, whether a tran-
sition fromaproof ofwork based system to a proof of stake onemight happen.
What I mean by proof of stake is that instead of your "vote" on the accepted
transaction history being weighted by the share of computing resources you
bring to the network, it’s weighted by the number of bitcoins you can prove
you own, using your private keys.”
As explained, the idea behind PoS is that voting power is not determined by

computing resources (as in PoW), but by the number of digital coins one owns.
In PoW, one CPU equals one vote; in PoS, one digital coin equals one vote. This
naturally raises many questions: How are the coins initially distributed? Does
this system simply make the rich richer? How are blocks proposed? Different
blockchains have answered these questions in various ways, and Ethereum has
developed its own unique solution.

One thing to note is that, while Bitcoin is slow and conservative in its goals and
development, Ethereum’s ethos is to ‘move fast and break things’. Although it took
eight years to transition from PoW to PoS, many of these changes can be ques-
tioned. It seems that the Ethereum community prefers to implement changes
quickly and refine them as needed, rather than engage in prolonged debates
over potential risks. This dynamic approach renders Ethereum an interesting
blockchain to study as it fosters the emergence of new ideas. Plus, the challenge
of ideas is welcomed by the community, which can lead to direct impacts on the
blockchain.

We dive into a thorough explanation of the protocol in Chapter III as this is part
of our contribution.

I.4 . Terminology

Throughout this manuscript, we will utilize specific blockchain terminology. To
ensure clarity and consistency, this section will serve as a glossary to explain re-
curring terms. Additionally, we will address instances where different terms have
equivalent meanings.
Protocol. The protocol of a blockchain refers to the set of rules that users must
follow to communicate and act within that blockchain. We may also refer to the
specifications of a protocol, which holds the same meaning. In practice, the pro-
tocol is defined by the code that blockchain participants use to send messages,
propose blocks and transactions, and perform other necessary actions.
Participants. "Participants" is a term with many synonyms. Participants can
also be called agents, nodes or processes interchangeably. There are different
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types of participants: those who take part in the blockchain consensus, and those
who do not. A participant who only sends transactions is considered a user of the
blockchain; they use the blockchain but do not have a role in its consensus. In
Ethereum, participants involved in the consensus process are known as valida-
tors, while in Bitcoin, they are called miners. The terminology varies depending
on their role, which is defined by the protocol. In practice, consensus participants
are machines running programs to follow and engage in the blockchain protocol.
Byzantine. A Byzantine participant can deviate arbitrarily from the prescribed
protocol. This appellation stems from the Byzantine General Problem introduced
by Lamport, Shostak, and Pease [LSP82]. This problem is an analogy to simu-
late how reliable computer systemsmust handlemalfunctioning components that
give conflicting information to different parts of the system. The problem is stated
as follow:
“A group of generals of the Byzantine army camped with their troops around
an enemy city. Communicating only by messenger, the generals must agree
upon a common battle plan. However, one or more of them may be traitors
who will try to confuse the others. The problem is to find an algorithm to
ensure that the loyal generals will reach agreement.”
This thought experiment outlines the challenges of reaching consensus if some

members of the group are compromised. One of the solution proposed involves
making the assumption that, among the n participants there are only f traitors4,
such that f < n/3.

This threshold stems from the two constraints we have in order to reach con-
sensus: (a) the honest participants n−f should be able to make a decision even if
the traitors do not respond, and (b) the traitors should not be able to cause honest
participants to make two different decisions. For (a), this means that n − f must
constitute a majority. For (b), this means that half of the honest participants n−f

2plus the traitors f must not constitute a majority. This translates in:
n− f >

n− f

2
+ f

⇔ 2n− 4f > n− f

⇔ n

3
> f.

This solution is fundamental in proving that reaching consensus is possible
even in adversarial settings. The requirement for two-thirds of participants to
agree in order to reach consensus is often called a supermajority. A protocol that
tolerates the presence of a Byzantine adversary while maintaining its guarantees
is deemed Byzantine Fault Tolerant (BFT).

4 ↑ f stands for faulty, we use this term interchangeably to talk about Byzantine participants.
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Finalization. In blockchains, we say that a block is finalized if it permanently
belongs to the chain. Non-finalized blocks are not guaranteed to always belong
to the chain.

Consensus. The consensus holds the same meaning as in everyday life, this is
an agreement among a set of agents. The only difference is that in blockchain
systems, agreements concern blocks, and consensus is repeatedly achieved to
agree on increasingly larger sets of blocks. In this context, our formalization of
consensus in blockchain, partly based on Dolev et al. [DDS87], is the following.
Definition I.1 (Consensus). A blockchain protocol achieves consensus if it satisfies
the following three properties:

• Safety: No concurrent blocks can be finalized.
• Liveness: The set of finalized blocks continuously grows.
• Validity: The blocks agreed upon must have been proposed by one of the par-
ticipants.

The validity property is often taken for granted in blockchain and what we are
really interested in are the Safety and Liveness properties. This was part of our
work to define them adequately before beginning our analysis, the formal defini-
tions are presented in Chapter III.

The consensus in blockchain can be summarized as we want to make sure
we agree on the same thing and there should never be a point after which we
cannot agree anymore. The protocol must not reach a point where finalization
stops, preventing any new blocks from being finalized. In this case, the protocol
is considered live.

These two properties are more thoroughly described in Chapter III and consti-
tute part of our contribution.

I.5 . Contribution

Our research focuses on the analysis of blockchain robustness. By robustness,
we mean the blockchain’s ability to avoid unsolvable forks (ensuring Safety) while
alwaysmaintaining the possibility to add new blocks (ensuring Liveness). Our work
ranges from distributed systems to game theoretic analysis. Distributed systems
consider two types of agents: honest and Byzantine. Honest participants follow
the prescribed protocol while Byzantine participants deviate from it arbitrarily.
This binary classification overlooks the nuances introduced by rational players of
game theoretic models, who act based on incentives rather than strict adherence
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to the protocol or malicious intent. The lack of research in distributed systems re-
garding blockchains’ incentives that are yet paramount for participants motivated
our work.

In particular, we focused our analysis on one blockchain: Ethereum. Ethereum
is the second biggest blockchain in terms of market capitalization and changed
from a PoW consensus to a PoS one at the beginning of our work (2021). This
transition called The Merge brought a lot of changes with it and motivated our
work. We often refer to Ethereum protocol as Ethereum PoS protocol to empha-
size this change of paradigm. This resulted in an involved protocol lacking study
and explanation. By focusing on Ethereum, we saw an opportunity to contribute
meaningfully to the field while closely observing the transition and its impacts on
the properties of the blockchain.

The organization of this manuscript follows the chronological progression of
our research. After establishing the necessary properties and definitions, we first
analyze the protocol from a distributed systems perspective, initially without con-
sidering rewards and penalties. We then extend this analysis by incorporating
penalties. Finally, the last technical chapter before the conclusion examines the
protocol from a game-theoretic perspective. Here is a more detailed overview of
each chapter:

• Chapter II presents the remaining terms useful throughout the manuscript
and gives the essential properties and model we use for our analysis.

• Chapter III is the first part of ourwork, focusing onunderstanding the Ethereum
PoS protocol. We started from scratch by reviewing the code to extract its
properties. This led to the publication of our first paper [PAT23] that we ex-
tended for a ACM DLT journal recently accepted.

• Chapter IV pushes the protocol analysis further by taking into account penal-
ties present in the protocol. This is uncommon in distributed system analy-
sis. This work led to another publication [PAT24a]

• Chapter V is the last technical chapter and contains elements of our last
paper [PAT24b]. We model the interactions between block proposers and
attesters as a game. We investigate the most profitable behaviors for the
players.

• Chapter VI summarizes our results and opens on possible future research
linked to our work.

I.6 . Related Work on Blockchain Analysis
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As mentioned, our work during this thesis revolves around the case study of
Ethereum Proof-of-Stake. We contribute to the field by formalizing the protocol,
defining properties, presenting attacks against these properties, and then analyz-
ing the strategies of rational validators. In this chapter, we present related works
corresponding to each of these efforts.

I.6.1 . Blockchain Formalization

The category of papers that aim to formalize blockchains includes all the white
papers. These are articles explaining the main features of a protocol, often writ-
ten by the team behind the blockchain. This trend started in 2008 with the first
blockchain, Bitcoin [Nak08], and has been followed almost religiously by subse-
quent protocols. Ethereum is no exception, having released its first white paper
in 2014 [But14] when the Ethereum blockchain operated with a PoW consensus.

Following the release of a white paper by a protocol’s team, other papers have
emerged to challenge or complement the blockchain’s description. For Bitcoin,
this is exemplified by the work of Garay et al. [GKL15], who analyzed the protocol’s
pseudo-code and deduced some of its properties. Similarly, Amoussou-Guenou
et al. [APPT19] proved the correctness of the Tendermint protocol, thereby com-
plementing the initial white paper [BKM18]. Alturki et al. [ACL+19] used a proof
assistant to prove the safety of the Algorand’s blockchain [CM19]. Similarly, García-
Pérez and Schett [GS19] provided a formal correctness proof of the Stellar Consen-
sus Protocol (SCP). Amores-Sesar et al. [ACM20] study revealed that the Ripple
protocol might violate both safety and liveness, challenging the initial claims of
Ripple’s Byzantine fault tolerance.

The first section of our work has a similar aim. We extract the pseudo-code
from the Ethereum specifications [Fou24], which is the description of how to im-
plement the protocol, to formalize its properties. Themost recent Ethereumwhite
paper was released to explain the new protocol following the transition from PoW
to PoS [BHK+20].

Outside of this line of work focusing on specific protocols, other efforts have
aimed to provide formal foundations for blockchains. Anceaume et al. [ADL+19]
proposed a formalization of blockchains and their evolutions as Block Trees. The
work of Anceaume et al. [ADRT21] described the different ways blockchains can
ensure that blocks permanently belong to the chain, finalizing them. We rely on
the definitions of Block Tree and finality to express the properties of the Ethereum
protocol.
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I.6.2 . Attacks and Vulnerabilities

A considerable amount of work has been focused on identifying protocol vul-
nerabilities. The most famous example is probably the seminal work of Eyal and
Sirer [ES18], which presents the selfish mining attack on Bitcoin. Eyal and Sirer
show that in Bitcoin (and proof-of-work in general), miners can benefit from devi-
ating from the prescribed protocol by withholding blocks for a while, to the detri-
ment of honest miners. Many other examples exist: for instance, Amoussou-
Guenou et al. [ADPT18] pointed out a liveness vulnerability in the Tendermint
protocol, and Neuder et al. [NMRP20] presented an attack where nodes can reor-
ganize Tezos’ Emmy+ chain and then performadouble-spend attack. The protocol
has been updated since then for a more robust solution proposed by Astefanoaei
et al. [ACP+21].

Our work focuses on Ethereum, which is no stranger to protocol attacks. Neu
et al. [NTT21] exhibited a balancing attack, highlighting the shortcomings of a con-
sensus mechanism divided into two layers (finality gadget and fork choice rule).
Mitigation against this attack was proposed, but Neu et al. [NTT22] overcame
this mitigation with a new balancing attack. Schwarz-Schilling et al. [SNM+22]
presented reorg attacks, attacks where the chain is reorganized leaving previous
blocks orphaned, revealing that proposers could gain from disturbing the proto-
col by releasing their blocks late.

Nakamura [Nak19b] presented an attack called splitting attack, in which the
adversary sends messages to split the set of validators. However, Nakamura
assumes that the adversary needs to control and manipulate network delays,
which is a strong and potentially unrealistic assumption. More recently, Schwarz-
Schilling et al. [SNM+22] demonstrated through experiments that attackers can
predict the proportion of validators receiving a given message within a specific
timeframe with sufficient accuracy. This contradicts Nakamura’s claim that the
attack necessitates the adversary to control network delay.

We contribute to this line ofwork by identifying flaws on the EthereumPoSpro-
tocol. First, we outline a flaw regarding the liveness of the current EthereumProof-
of-Stake protocol, emphasizing the importance of reconciling availability and final-
ity. Our approach differs from Galletta et al. [GLMV23], who aim to formally verify
the Hybrid Casper protocol [BG17], focusing on an outdated version. We formalize
the current implementation of the protocol through pseudo-code and expose a
liveness attack on the protocol. Our work presents a form of the splitting attack
where a message received by honest validators at different times is differently
perceived to be on time or too late, splitting the validators into two ’views’. This
different perception greatly influences which chain they consider canonical. This
attack is based on the assumption that the adversary knows the network delay (in
line with Schwarz-Schilling et al. [SNM+22]) but does not control it.
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I.6.2A Incentives

Very few efforts in the literature have taken the incentive mechanism of protocols
into account to evaluate how Byzantine validators could exploit it. Initial efforts
were made to intertwine the study of incentives with considerations of liveness
and safety properties of the Ethereum protocol [BRLP20]. However, this early ex-
ploration discussed a preliminary version of the protocol [BG17] and did not in-
clude an analysis of the inactivity leak. The inactivity leak is the mechanism that
penalizes inactive validators by reducing their stake. The most recent version of
the protocol by its founder [BHK+20] does not mention this mechanism. The in-
activity leak still lacks a detailed examination, and our work aims to fill this gap.

While mechanisms similar to Ethereum’s inactivity leak exist elsewhere (e.g.,
[Woo16, Goo14]), to the best of our knowledge, there has very few analysis of the
risk associated with potentially draining honest stake in a Byzantine-prone envi-
ronment. An investigation linking penalties with the actions of Byzantine valida-
tors is presented by Zhang et al. [ZLD23]. This work demonstrates how Byzantine
validators can maliciously cause attestation penalties for honest validators.

Our work is similar to Zhang et al. in scope, however we focus on more sub-
stantial penalties, i.e., the inactivity penalties and slashing. During the inactivity
period, attestation penalties tend to be less significant. We found that the penal-
ties could be detrimental for the protocol’s safety if exploited by Byzantine partic-
ipants.

I.6.3 . Rational Agents in Blockchain

Incentives are not often considered in the distributed systems field. Game
theory precisely addresses this gap.

Following the influential work of Eyal and Sirer [ES14, ES18], subsequent works
(e.g., [GP20, NKMS16, SSZ16, ZET20]) use game-theoretic tools to analyze the max-
imum gain a rational miner can achieve by selfish mining, i.e., deviating from the
proof-of-work protocols by withholding found blocks to gain an advantage inmin-
ing subsequent blocks. Also considering only rational participants, the work of Bi-
ais et al. [BBBC19] proves that while playing the proof-of-work game and following
the longest chain’s rule is an equilibrium -where no participant can improve their
outcome by changing their strategy-, multiple other equilibria exist where forks
may persist.

At the intersection of distributed systems, whichmodel agents as either honest
or Byzantine, and game theory, which models agents as rational, a mixed model
was proposed: BAR (Byzantine, Altruistic, and Rational) [AAH11]. However, the
complexity of the analysis rises quickly with so many types of agents. The work of
Halpern and Vilaça [HV16] considers rational participants who can fail by crashing.
They prove that in such a setting, there is no ex-post Nash equilibrium solving
the fair consensus problem. Amoussou et al. [ABPT20] consider agents being
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either rational or Byzantine, exhibiting different equilibrium depending on the
proportion of each.

These works do not apply to Ethereum since its PoS mechanism is too dif-
ferent from classic PoW or classic BFT. Regarding PoS in general, Saleh [Sal20]
showed that the nothing-at-stake, problem in which PoS participant can extend si-
multaneously different fork without cost was prevented due to the value of the
blockchain and thus their stake being decreased by such actions. For the Algo-
rand blockchain Fooladgar et al. [FMJR20] showed that the cost and rewards of
the protocol did not create an equilibrium in which participants followed the pro-
tocol. They proposed an adjustment of the rewards to entice selfish participants
to cooperate. Comparing our work to the game theory literature on the Ethereum
PoS consensus, Roughgarden [Rou20] conducted a game-theoretic analysis of an
Ethereum Improvement Proposal (EIP) to evaluate its impact on transaction and
proposer rewards considering rational agents. Many works focus on MEV (Maxi-
mal Extractable Value), which involves taking advantage of the transaction order-
ing in a block. In contrast, we focus on game-theoretic analyses affecting the con-
sensus directly. We differ fromworks like [BCC+23], which consider the possibility
of making ransom demands without being detected. Schwarz-Schilling [SNM+22]
studies the optimal timing for proposers to propose their blocks.

Our endeavor is closest to the work of Carlsten et al. [CKWN16] and Tsabary
and Eyal [TE18] that study selfish behavior in Bitcoin using game theory when
the only source of rewards is transaction fees (no more coinbase transactions).
Tsabary and Eyal show that the Bitcoin blockchain becomes unstable since block
miners fork theBitcoin blockchain to obtain themost lucrative transactions. Ethereum
PoS does not reward block proposers with coinbase transactions; however, the
presence of attesters and a different fork choice rule than Bitcoin’s makes the
analysis more complex. We focus on analyzing the behavior of block proposers
and attesters in Ethereum PoS using game theory and demonstrate that the pro-
tocol tends to stabilize, even though a proposer might gain more by deviating
from the prescribed strategy due to the initial asynchronous setting. Moreover,
transaction fees do not play a crucial role in our analysis due to rewards stemming
from attestations.
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C
onducting science primarily involves two approaches: empirical and theo-
retical. Empirical science observes systems and studies the data and results
from experiments, inferring general laws and their functioning. Theoretical

science uses models to represent problems and employs these models to derive
theorems and rules about the subject of study. When creating a model, you must
make assumptions and hypotheses that define the constrained reality you aim to
understand. In this chapter, we outline models relevant to blockchain protocols
and consensus.

II.1 . Distributed Computing Model

Analyzing the EthereumPoS, we consider participants to be validators, forming
a finite setΠ. There are a total of n validators. Being in PoS system, each validator
owns a stake, which refers to the amount of cryptocurrency (ETH) they possess.
This stake serves as a metric of their investment and influence in the consensus
protocol. Throughout this manuscript, the term "proportion" is used concerning
a validator set to denote the ratio of their combined stake to the total staked.
A validator is interested in owning a stake as it comes with responsibilities that
are rewarded. Initially capped at 32 ETH, a validator’s stake has the potential to
decrease.

II.1.1 . Fault Model

In distributed systems, the goal of a protocol is to guarantee certain properties
despite the presence of faulty participants. In our analysis, faulty participants will
always be Byzantine ones [LSP82].

17



Following the well-known work of Castro and Liskov [CL99], we consider the
worst-case scenario in which all faulty nodes are controlled by a single adversary.
This assumption of a strong adversary is crucial for ensuring the reliability of criti-
cal distributed systems, where certain guarantees are expected even in the event
of unexpected failures. However, during our analyses the adversary does not ma-
nipulate message delays between honest validators.

Unlike the dynamic adversary model considered by Chen and Micali [CM19],
where the adversary can change the set of faulty nodes during execution, the
works presented in this manuscript consider a static adversary. This means that
the set of faulty participants is determined at the start of the analysis and does
not change throughout. We denote the proportion of Byzantine validators, which
is the ratio of the sum of the stake of all Byzantine validators over the stake of all
validators, by β with β < 1/3. When analyzing changes in theByzantine proportion
over time, we define the initial proportion as β0 < 1/3.

The Ethereum PoS protocol aims to achieve Byzantine Fault Tolerance (BFT),
ensuring the preservation of both Safety and Liveness properties as long as the
initial proportion of Byzantine validators (β0) remains strictly below 1/3.

II.2 . Synchronization and Communication

II.2.1 . Time

Each participant maintains its own clock to keep track of time. We assume that
all clocks are synchronized and run at the same pace. Any discrepancies in clock
synchronization are considered as part of the message delay.

In the EthereumPoS protocol, time ismeasured in periods of 12 seconds, called
slots, with a period of 32 slots making up an epoch, which serves as the largest
time unit in the protocol. These timeframes are used to assign specific roles to
validators at particular moments.

II.2.2 . Network

We assume a partially synchronous model [DLS88], which consists of an asyn-
chronous period of unknown length followed by a synchronous period:

• During the asynchronous period, there is no bound on message delay. A
message sent during this period has no guarantee of reaching its recipient
before the asynchronous period ends.

• Conversely, in the synchronous period, there is a known bound∆, ensuring
that any message sent at time t is received by time t+∆ at the latest.

The partially synchronous model begins with an asynchronous period that lasts
until a global stabilization time (GST), after which the synchronous period begins.
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Studying protocols under this model is common to ensure resilience under
both good and bad network conditions. It is important to note that even with
synchronized clocks, the presence of an asynchronous network before GST still
qualifies the system as partially synchronous.

Validators communicate through message passing. We assume the existence
of an underlying broadcast primitive, which operates as a best-effort broadcast.
Thismeans thatwhen an honest validator broadcasts a value, all honest validators
eventually receive it. Messages are signed with a digital signature, providing a
mechanism for cryptographic identification and validation within the protocol.

II.3 . Game Model

Thismanuscript presents three distinct analyses: the first two fromadistributed
systems perspective, and the last one from a game-theoretic perspective. The
shift in focus necessitates a corresponding change in the modeling approach.

In Chapter V, wemodel the EthereumPoS consensus protocol as a gamewhere
each player1 acts either as a proposer or an attester. In the ideal scenario, pro-
posers propose blocks, and attesters broadcast attestations. The game unfolds
over s sequential slots. There is one proposer and a ∈ N attesters per slot, leading
to a total of s proposers and as attesters. The total number of slots s is unknown
to the players.

Similar to the approach in [CKWN16], our game is based on the following as-
sumptions: (i) The game occurs during a synchronous period where the network
is fully synchronous, meaning there is no latency. This implies that once informa-
tion (such as a block, attestation, or transaction) is broadcast, all players imme-
diately become aware of it. (ii) The synchronous period follows an asynchronous
period, during which there may have been delays in information transmission.
This assumption aligns with the Ethereum protocol’s network behavior hypothe-
sis [BHK+20].

We model the interactions between proposers and attesters during n slots in
Ethereum PoS as a dynamic game in which actions occur sequentially. In each
slot, the sequence of events is as follows: (i) a block is proposed at the beginning
of the slot, (ii) new transactions are proposed, and (iii) all attesters for the slot
simultaneously send their attestations. The actions, rewards, and strategies of
validators will be thoroughly described and analyzed in Chapter V.

1 ↑ The players are the participants of the Ethereum PoS that we also consider as a game for
our analysis.
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A
ll of our work revolves around the Ethereum protocol. We intend to study
this blockchain, whichwas once aPoWblockchain and is nowaPoSblockchain,
to develop a general understanding using a famous case study. To do so,

we start with the roots of any protocol: its code. The Ethereum Foundation and
the inventor of Ethereum, Vitalik Buterin, have produced a paper [BHK+20] to
explain the protocol and prove its properties. The issue is threefold: the paper
discusses an outdated version of the protocol, not the entirety of the protocol is
taken into account, and their results seem to contradict the crucial CAP theorem
[Bre00]. For all these reasons combined, we begin our analysis from scratch, start-
ing from the code. We begin our contribution by defining crucial properties for
blockchains. We then use pseudo-code that reflects the protocol and the proper-
ties newly defined to evaluate the guarantees provided by the protocol. This first
analysis does not consider the incentives part of the protocol.

III.1 . Safety and Liveness Properties

Once the protocol has been laid out, we can investigate its properties. Despite
their names, blockchains are closer to block trees. Forks can occur and cause the
blockchain to have several branches rather than a unique chain. We adopt the
formalization of Anceaume et al. [ADL+19] of blockchain data structure as a block
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tree. Indeed, the blockchain takes the form of a tree in which every node is a block
pointing to its unique parent, and the tree’s root is the genesis block. Among the
different branches of the block tree, the protocol indicates a unique branch, or
chain, to build upon with a so-called fork choice rule (e.g., the longest chain rule
in Bitcoin). The selected chain is called the canonical chain.
Definition III.1 (Canonical chain). We call canonical chain the chain designated as
the one to build upon by the fork choice rule. Considering the view of the chain of an
honest validator i, i’s associated canonical chain is noted Ci.

The blocks in the canonical chain can be finalized or not.
Definition III.2 (Finalized block). A block is finalized for a validator i if and only if
the block cannot be revoked, i.e., it permanently belongs to the canonical chain Ci.

Note: It stems from the definition that all the predecessors of a finalized block
are finalized.
Definition III.3 (Finalized chain). The finalized chain is the chain constituted of all
the finalized blocks.

Note: The finalized chain Cfi is always a prefix of any canonical chain Ci.
To analyze the protocol, one needs to examine the capability of the Ethereum

Proof-of-Stake protocol to construct a consistent blockchain (safety), to allow val-
idators to add blocks despite network partitions and failures (availability), and to
make progress on the finalization of new blocks (liveness). These are paramount
properties characterizing blockchains. Safety, availability, and liveness are ex-
pressed as follows:
Property III.1 (Safety). A blockchain is consistent or safe if, for any two honest val-
idators with a finalized chain, one chain is necessarily the prefix of the other. More
formally, for two validators i and j with respective finalized chains Cfi and Cfj , Cfi is
the prefix of Cfj or vice versa.

Property III.2 (Liveness). A blockchain is live if the finalized chain is ever growing.
Property III.3 (Availability). A blockchain is available if the following two condi-
tions hold: (1) any honest validator is able to append a block to its canonical chain
in bounded time, regardless of the failures of other validators and the network parti-
tions; (2) the canonical chains of all honest validators are eventually growing, i.e., given
a block bk added to a canonical chain at a distance d from the genesis block b0, where
the distance is the number of blocks separating bk from b0, eventually a block bl will be
added to the canonical chain at a distance d′ > d.
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The key difference between the finalized chain and the canonical chain is that
blocks in the finalized chain are permanent and cannot be revoked. In contrast,
the canonical chain can switch branches, meaning blocks in the previously chosen
branch can potentially be revoked. Availability, on the other hand, guarantees that
adding blocks to the canonical chain is a wait-free operation whose time to com-
plete does not depend on network failures or Byzantine behaviors. Availability
also implies that blocks are constantly added in such a way that the height of the
canonical chain eventually grows. This property avoids the pathological scenario
in which all the blocks are added to the genesis block to form a star.

As in any distributed system, blockchains are faced with the dilemma brought
by the CAP Theorem. This theorem states that no distributed system can satisfy
these three properties at the same time: consistency, availability, and partition tol-
erance. Indeed, if network partitions occur, either the system remains available
at the expense of consistency, or it stops making progress until the network par-
tition is resolved to guarantee consistency. This means that no blockchain can
simultaneously be available and consistent. However, by maintaining the canoni-
cal and the finalized chain simultaneously, Ethereum Proof-of-Stake aims to offer
both safety and availability. The canonical chain aims to be available but with-
out guaranteeing consistency all the time, while the finalized chain falls on the
other side of the spectrum, guaranteeing consistency without availability. There-
fore, the finalized chain will finalize blocks only when it is safe to do so, whereas
the canonical chain will still be available during network partitions (caused by net-
work failures or attacks). The only caveat here is that the finalized chain grows
by finalizing blocks of the canonical chain, which means that the properties of the
two chains are interdependent. In particular, to assure liveness, it is necessary
that the canonical chain steadily grows. This interdependence is a source of vul-
nerability as we show in the remainder of our analysis.

III.2 . Ethereum PoS protocol

III.2.1 . Overview

The Ethereum Proof-of-Stake (PoS) protocol design is quite involved. We iden-
tify, similarly to [NTT21], the objectives underlying its design as follows: (i) finalizing
blocks and (ii) having an available canonical chain that does not rely on block final-
ity to grow. To this end, the Ethereum PoS protocol combines two blockchain de-
signs: a Nakamoto-style protocol to build the tree of blocks containing the trans-
actions and a BFT finalization protocol to progressively finalize blocks in the tree.
The objective is to keep the blockchain creation process always available while
guaranteeing the finalization of blocks through Byzantine-tolerant voting mecha-
nisms. The finalization mechanism is a Finality Gadget called Casper FFG, and the
fork choice rule to select canonical chains is LMD GHOST.
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Figure III.1: Ethereum protocol Structure

Before introducing how the fork choice rule and the finality gadget work to-
gether, we will introduce the following basic concepts: (i) slots, epochs, and check-
points, which set the pace of the protocol allowing validators to synchronize to-
gether on the different steps, (ii) committees formation and assignment of roles
to validators as proposers and voters for each slot, and (iii) the different types of
votes the validators must send in order to grow and maintain the canonical chain
as well as the finalized chain.

In this section, we focus on providing a formalized version of the protocol
through pseudo-code, following the specification given by the Ethereum Founda-
tion [Fou24]. Note that a description of an initial plan of the protocolwas proposed
by Buterin et al. in [BHK+20]. We describe and formalize the current implemen-
tation of the protocol [Fou24].

III.2.1A Slots, Epochs & Checkpoints

In proof-of-work protocols, such as originally described in [Nak08], the average
frequency of block creation is predetermined in the protocol, and the mining
difficulty changes to maintain that pace. In contrast, in Ethereum PoS, it is as-
sumed that validators have synchronized clocks to propose blocks at regular inter-
vals. More specifically, the protocol uses time frames called slots (12 seconds) and
epochs (6 minutes and 24 seconds). Each epoch is comprised of 32 slots. Epoch 0

contains slot 0 to slot 31, then epoch 1 slot 32 to slot 63, and so on. These slots and
epochs allow associating the validators’ roles to the corresponding time frame.

An essential feature of epochs is the checkpoint. A checkpoint is a pair (block,
epoch) (b, e)where b is the block of the first slot1 of epoch e. Figure III.1 represents
the structure of an epoch in EthereumPoS, with the checkpoint being represented
by the hexagonal blue shape.

1 ↑ In the event of an epoch without a block for the first slot, the block used for the checkpoint
is the last block in the canonical chain, belonging to a previous epoch. On the contrary, if the
proposer of the first slot proposes multiple blocks, this will create multiple checkpoints for the
other validators to choose from using the fork choice rule.
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III.2.1B Validators & Committees

Validators have two main roles: proposer and attester. The proposer’s role con-
sists of proposing a block during a specific slot2. This role is pseudo-randomly3
assigned to 32 validators per epoch (one for each slot). The attester’s role con-
sists of producing an attestation sharing the validator’s view of the chain. This
role is assigned once per epoch to each validator.

In each epoch, a validator is assigned to exactly one committee (of attesters).
A committee Cj is a subset of the whole set of validators. Each validator belongs
to exactly one committee, i.e., ∀j ̸= k, Cj

⋂
Ck = ∅ and for each epoch ⋃i Ci = Π.

Each committee is associated with a slot. During this slot, each member of the
committee will have to cast an attestation to indicate its view of the chain.

In short, during an epoch, validators are all attesters once and have a small
probability of being proposers (32/n). The roles of proposer and attester are en-
tirely distinct, i.e., the proposer of a slot is not necessarily an attester of that slot.
III.2.1C Vote & Attestation

There are two types of votes in Ethereum PoS: the block vote4 and the checkpoint
vote5. The message containing these two votes is called an attestation. During
an epoch, each validator must make one attestation. The attestation should be
sent during a specific time slot, which is determined by the validator’s committee.
The two types of votes, checkpoint vote and block vote, have very distinct pur-
poses. The checkpoint vote is used to finalize blocks and grow the finalized chain,
while the block vote is used to determine the canonical chain. Although validators
cast their two types of votes in one attestation, an important distinction must be
made between the two. Indeed, the two types of votes do not require the same
conditions to be taken into account. The checkpoint vote of an attestation is only
considered when the attestation is included in a block. In contrast, the block vote
is considered one slot after its emission, whether it is included in a block or not.

The code associated with the production of attestations is described in Algo-
rithm 3 at subsection III.2.2. We then describe in Algorithm 6 how the reception
of attestations is handled.
III.2.1D Finality Gadget

The finality gadget is themechanism that aims at finalizing blocks. The finality gad-
get grows the finalized chain independently of block production. This decoupling
of the finality mechanism from block production permits block availability even

2 ↑ The current protocol specifications [Fou24] indicate that honest validators should send their
block proposition during the first third of their designated slot.

3 ↑ Detailed explanation in subsubsection III.2.1F.
4 ↑ Also called GHOST vote in [BHK+20] and in the specifications [Fou24].
5 ↑ Also called FFG vote in [BHK+20] and in the specifications [Fou24].
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when the finalizing process is slowed down. This differs from protocols like Ten-
dermint [BKM18], where a new block can be added to the chain only after being
finalized.

The finality gadget works at the level of epochs. Instead of finalizing blocks
one by one, the protocol uses checkpoint votes to finalize entire epochs. We now
present inmore detail how the finality gadget of EthereumPoS grows the finalized
chain.

Recall that to be taken into account, a checkpoint vote needs to be included in a
block. The vote will then influence the behavior of validators regarding this partic-
ular branch. Thus, in Algorithm9of subsection III.2.2, the function countMatchingCheckpointVote
only counts the matching checkpoint votes of attestations included in a block.

Justification The justification process is a step towards achieving finalization6.
It operates on checkpoints at the level of epochs. Justification occurs thanks to
checkpoint votes. The checkpoint vote contains a pair of checkpoints: the check-
point source and the checkpoint target. We can countwith countMatchingCheckpointVote
the sum of balances of the validators’ checkpoint votes with the same source and
target. If validators controlling more than two-thirds of the stake make the same
checkpoint vote, then we say there is a supermajority link from the checkpoint
source to the checkpoint target. The checkpoint target of a supermajority link is
said to be justified.

More formally, a checkpoint vote is in the formof a pair of checkpoints: ((a, ea), (b, eb)),
also noted (a, ea) −→ (b, eb). For the checkpoint vote (a, ea) −→ (b, eb), we call (a, ea)
the checkpoint source and (b, eb) the checkpoint target. The checkpoint source
is necessarily from an earlier epoch than the checkpoint target, i.e., ea < eb. In
line with [BHK+20], we say there is a supermajority link from checkpoint (a, ea) to
checkpoint (b, eb) if validators controlling more than two-thirds of the stake cast
an attestation with the checkpoint vote (a, ea) −→ (b, eb). In this case, we write
(a, ea)

J−→ (b, eb), and the checkpoint (b, eb) is justified.

Finalization The finalization process aims at finalizing checkpoints, thus grow-
ing the finalized chain. Checkpoints need to be justified before being finalized.
Let us illustrate the finalization process with the two scenarios that can lead to
finalization. The first case presents the main scenario in the synchronous setting.
It shows how a checkpoint can be finalized in two epochs, the minimum number
of epochs needed for finalization.

Case 1: The scenario is depicted in Figure III.2.
6 ↑ The genesis checkpoint (i.e., the checkpoint of the first epoch) is the exception to this rule: it

is justified and finalized by definition.
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· · · A B · · ·

· · · A B · · ·

· · · A B · · ·

Figure III.2: The figure depicts the finalization scenario of Case 1with the 3 steps from top
to bottom. We represent a checkpoint with a hexagon, a justified checkpoint with a double
hexagon, and a finalized checkpoint with a colored double hexagon. The arrow between
two checkpoints indicates a supermajority link.

1. Let A = (a, e) and B = (b, e + 1) be checkpoints of two consecutive epochs
such that A = (a, e) is justified.

2. A supermajority link occurs between checkpoints A and B where A is the
source and B the target. This justifies checkpoint B. Hence, we can write:
(a, e)

J−→ (b, e+ 1) or equivalently A J−→ B.
3. This leads to A being finalized.
The second case illustrates the scenario in which two consecutive checkpoints

are justified but not finalized. This means that the current highest justified check-
point (e.g., B in Figure III.3) was not justified with a supermajority link having the
previous checkpoint A as its source. Then, a new justification occurs with the
source and target being at the maximum distance (2 epochs) for the source to
become finalized. It is important to note that there is no limit on the distance
between two checkpoints for justification to be possible. This limit only exists for
finalization.

Case 2: The scenario is depicted in Figure III.3.
1. LetA = (a, e),B = (b, e+1), andC = (c, e+2) be checkpoints of consecutive
epochs such that A and B are justified. Since there is no supermajority link
between A and B, A cannot be finalized as in Case 1.

2. Now, a supermajority link occurs between checkpoints A and C where A is
the source and C the target. This justifies checkpoint C , i.e., A J−→ C.

3. This leads to A being finalized.
These two cases illustrate the fact that for a checkpoint to become finalized,

it needs to be the source of a supermajority link between justified checkpoints.
Once a checkpoint is finalized, all the blocks leading to it (including the block in
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· · · A B C · · ·

· · · A B C · · ·

· · · A B C · · ·

Figure III.3: The figure depicts the finalization scenario of Case 2with the 3 steps from top
to bottom. We represent a checkpoint with a hexagon, a justified checkpoint with a double
hexagon, and a finalized checkpoint with double hexagon coloured. The arrow between
two checkpoints indicates a supermajority link.

· · · A B C · · ·

· · · A B C · · ·

Figure III.4: This figure illustrates the case of two checkpoints A and C respecting all the
conditions for finalization but the one that stipulates that a checkpointB in-between must
be justified for A to be finalized.

the pair constituting the checkpoint) become finalized. We now describe the con-
ditions for a checkpoint to be finalized more formally. Let (a, ea) and (b, eb) be two
checkpoints such that ea < eb. The checkpoint (a, ea) is finalized if the following
conditions are respected:

• Source justified: The checkpoint (a, ea) is justified.
• Supermajority link: There exists a supermajority link (a, ea) J−→ (b, eb).
• Maximal gap: eb − ea ≤ 2.7 Moreover, if eb − ea = 2, then the checkpoint in
between at epoch ea + 1 (= eb − 1) must be justified.

The importance of the last condition is illustrated by Figure III.4. In practice, these
three conditions are only applied to the last four epochs. Asmentioned in [BHK+20],
at the implementation level, checkpoints more than 4 epochs old are not consid-
ered for finalization. All the conditions for finalization are illustrated by the last 4
conditions of Algorithm 9 in subsection III.2.2.

7 ↑ This last condition necessitating the two checkpoints to be at most 2 epochs away from each
other is also called 2-finality [BHK+20].
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III.2.1E Fork choice rule & Block proposition

The fork choice rule is the mechanism that allows each validator to determine
the canonical chain depending on their view of the BlockTree and the state of
checkpoints. The Ethereum PoS fork choice rule is LMD GHOST. The LMD GHOST
fork choice rule stems from the Greedy Heaviest-Observed Sub-Tree (GHOST) rule
[SZ15], which considers only each participant’s most recent vote (Latest Message
Driven). During an epoch, each validator must make one block vote on the block
considered as the head of the canonical chain according to its view.

To determine the head of the canonical chain, the fork choice rule does the
following:

1. Go through the list of validators and check the last block vote of each.
2. For each block vote, add a weight to each block of the chain that has the

block voted as a descendant. The weight added is proportional to the stake
of the corresponding validator.

3. Start from the block of the justified checkpoint with the highest epoch and
continue the chain by following the block with the highest weight at each
connection. Return the block without any child block. This block is the head
of the canonical chain.

The actual implementation is presented in Algorithm 7 in subsection III.2.2.
This algorithm is similar to the one already presented in [BHK+20]. Albeit each
block vote being for a specific block, the fork choice rule considers all the chains
leading to that block. This reflects the fact that a vote for a block is a vote for the
chain leading to that block. Figure III.5 offers an explanation with a visualization
of how attestations influence the fork choice rule. At each chain intersection, the
fork choice rule favors the chain with the most attestations.
III.2.1F Pseudo-Randomness

Ethereum’s solution to incorporate randomness in the consensus is called RAN-
DAO. RANDAO is a mechanism that creates pseudo-random numbers in a decen-
tralized fashion. It works by aggregating different pseudo-random sources and
mixing them.
Seed creation. Each epoch produces a seed. This seed is created with the help
of the block proposers of the said epoch. Each valid block contains a field called
randao_reveal8. The seed is the hash of an XOR of all the randao_reveal values
of an epoch plus the epoch number.

8 ↑ See subsection III.2.2 for a detailed explanation of its use.
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Figure III.5: Fork choice rule example observed from a validator i’s point of view. We
represent block votes with blue circles. Block votes point to specific blocks indicating the
block considered as the headblock of the candidate chain at the moment of the vote. Each
block has a number representing the value attributed by the fork choice rule algorithm
(cf. Algorithm 7) to determine the candidate chain - we assume for this example that each
validator has the same stake of 1. On the left we represent the chain at the end of slot 4,
and on the right at the end of slot 5. On the left, i’s fork choice rule gives the block of slot
4 as Ci ’s head. On the right, the fork choice rule designates the block of slot 5 as the head
of the candidate chain.

Each block’s randao_revealmust be the signature of specific data to prevent
manipulation in the seed creation. The data to sign is the current epoch number.
Anyone can then check that this signature is from the block proposer and for the
correct data.
Seedutilization. The algorithmusing the seed is called compute_shuffled_index
(cf. Algorithm 12). This algorithm stems from the swap-or-not algorithm introduced
by [HMR12]. compute_shuffled_index shuffles the validators list and assigns new
roles depending on their shuffled index. This pseudo-random shuffling function
is used two times in the Ethereum PoS consensus algorithm: for the proposer
selection and the committee selection. The proposer selection is described in Al-
gorithm 13 and the committee selection in Algorithm 14.

III.2.2 . Pseudo Code

This subsection can be skipped if the reader does not value the understanding
on how we dissected the protocol. This step is as crucial as tedious, we outline
the protocol based on the code that we formalized to be readable in the form of
a pseudo-code.

In this section, we dive into a practical understanding of the mechanism be-
hind the Ethereum PoS protocol. According to the specifications [Fou24] and var-
ious implementations (such as Prysm [Pry22] and Teku [Con22]), we formalize the
main functions of the protocol through pseudo-code for better understanding
and analysis purposes.
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Each validator p runs an instance of this particular pseudo-code. For instance,
when a validator pproposes a block, they broadcast the followingmessage: ⟨PROPOSE, (slot,

hash(headBlockp), content)⟩, where slot is the slot at which the proposer proposes
the block, the hash of the headBlockp is the hash of the block considered to be the
head of the canonical chain according to the fork choice rule (see Algorithm7), and
content contains data used for pseudo-randomness, among other things that we
will not detail here. We instead focus on the consensus protocol.

We describe in the following paragraphs the variables and functions used in
the pseudo-code and the goal of these functions.
Variables. During the computation, each variable takes a value that is subjective
and may depend on the validator. We indicate with p that the value of variables
depends on each process. The variable treep is considered to be a graph of blocks
with each block linked to its predecessor, representing the view of the blockchain
(more precisely, treep represents the view of all blocks received by the validator
since the genesis of the system). Each treep starts with the genesis block. rolep
corresponds to the different roles a validator can have, which can be none (i.e.,
for each slot, the validator can be proposer, attester, or have no role). rolep is a list
containing the role(s) of the validator for the current slot. The slotp is a measure
of time. In particular, a slot corresponds to 12 seconds. slotp ∈ N. Slot 0 begins
at the time of the genesis block and is incremented every 12 seconds. headBlockp

is the head of the canonical chain according to p’s local view and the fork choice
rule.

A checkpoint C is a pair block-epoch that is used for finalization. C has two
attributes, justified and finalized, which can be true or false (e.g., ifC is only justi-
fied, thenC.justified = true andC.finalized = false). lastJustifiedCheckpointp

is the justified checkpoint with the highest epoch. currentCheckpointp is the check-
point of the current epoch. The list attestationp is a list of size n (i.e., the total
number of validators). This list is updated only to contain the latest messages of
validators (of at most one epoch old). CheckpointV otep is a pair of checkpoints, so
a pair of pairs, used tomake a checkpoint vote. Let us stress the fact that all these
variables are local, and at any time, two different validators may have different
valuations of those variables.
Functions. We describe the main functions of the protocol succinctly before
providing the associated pseudo-code and a more detailed explanation:

• validatorMain is the primary function of the validator, which launches the
execution of all subsidiary functions.

• sync is a function that runs in parallel with the validatorMain function and
ensures the synchronization of the validator. It updates the slot, the role(s),
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and processes justification and finalization at the end of the epoch andwhen
a new validator joins the system.

• getHeadBlock applies the fork choice rule. This function indicates the head
block of the canonical chain.

• justificationFinalization is the function that handles the justification
and finalization of checkpoints.

We depict in Algorithm 1 the main procedure of the validator. This procedure
initializes all the values necessary to run a validator. We consider the selection of
validators already made to focus on the description of the consensus algorithm
itself. The main procedure starts a routine called sync to run in parallel. Then
there is an infinite loop that handles the call to an appropriate function when a
validator needs to take action for its role(s).
Algorithm 1Main code for a validator p
1: procedure validatorMain( )
2: treep ← nil ▷ The tree represents the linked received blocks
3: rolep ← [ ] ▷ rolep can be ROLE_PROPOSER and/or ROLE_ATTESTER when it is not

empty
4: slotp ← 0 ▷ slotp ∈ N
5: lastJustifiedCheckpointp ← (0, genesisBlock) ▷ A checkpoint is a tuple (epoch,

block)
6: attestationp ← [ ] ▷ List of latest attestations received for each validator
7: validatorIndexp ← index of the validator ▷ Each validator has a unique index
8: listV alidator ← [p0, p1, . . . , pN−1] ▷ A list of the validators index
9: balances← [ ] ▷ A list of the balances of the validators, their stake
10:
11: start sync(treep, slotp, attestationp, lastJustifiedCheckpointp, rolep, balances)
12:
13: while true do
14: if rolep ̸= ∅ then
15: if ROLE_PROPOSER ∈ rolep then
16: prepareBlock()

17: if ROLE_ATTESTER ∈ rolep then
18: prepareAttestation()

19: rolep ← [ ]

20: else
21: no role assigned ▷ No action required

The roles performed by the validator when acting as proposer or attester are
defined in Algorithm 2 and Algorithm 3, respectively. The proposer of a block
performs the following three tasks:

1. Get the head of its canonical chain to have a block to build upon.
2. Sign a predefined pair to participate in the process of pseudo-randomness.
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3. Broadcast a new block built on top of the head of the canonical chain.
The attestation is composed of three parts: the slot, the block vote, and the

checkpoint vote. The validator uses the fork choice rule presented in Algorithm 7
to obtain the block chosen for the block vote. Algorithm 7 and the one stemming
from it, Algorithm8, have already beendefined in [BHK+20]. We restate themhere
for the sake of completeness. For the checkpoint vote, an honest validator should
always vote for the current epoch as the target and take the justified checkpoint
with the highest epoch (i.e., lastJustifiedCheckpoint) as the source.

In order to broadcast this attestation, the attester must wait for one of two
things: either a block has been proposed for this slot, or 1/3 of the slot (i.e., 4
seconds) has elapsed. This is ensured by the function waitForBlockOrOneThird.
Algorithm 2 broadcast block
1: procedure prepareBlock( )
2: headBlockp ← getHeadBlock()
3: randaoReveal← sign( epochOf(slot))
4: broadcast ⟨PROPOSE, (slot, hash(headBlockp), randaoRevealp, content)⟩

Algorithm 3 Broadcast Attestation
1: procedure prepareAttestation( )
2: waitForBlockOrOneThird() ▷ wait for a new block in this slot or 1

3 of the slot3: headBlockp ← getHeadBlock()
4: currentCheckpointp ← (first block of the epoch, epochOf(slot) )
5: CheckpointV otep ←

(
lastJustifiedCheckpointp, currentCheckpointp

)
6: broadcast ⟨ATTEST, (slotp, hash(headBlockp)︸ ︷︷ ︸

block vote

, CheckpointV otep︸ ︷︷ ︸
checkpoint vote

)⟩

The synchronization of the validator p is handled by the function sync de-
scribed in Algorithm 4. This algorithm allows the validator to update its view of
the blockchain, particularly the current slot, the list of attestations, the last justi-
fied checkpoint, the validator’s role, and the balances of all validators. To deter-
mine its role(s), the validator verifies the index of the designated validator for the
current slot and the set of indexes forming the committee of the current slot.

In more detail, two conditions assign a role to a validator for the current slot.
The first condition calls Algorithm 13 and assigns the validator p the role of pro-
poser if its index matches that of the current proposer. The second condition
checks whether p belongs to the committee of the current slot (see Algorithm 14).
The roles of proposer and attester are entirely distinct, i.e., the proposer of a slot
is not necessarily an attester.

The synchronization function also starts two other routines, syncBlock and
syncAttestation, corresponding to Algorithm 5 and Algorithm 6, respectively.
These routines are used to handle the broadcasts from proposers and attesters.
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In both functions, upon receiving a block or an attestation, the validator p verifies
its validity using the isValid function. It is important to note that upon receiving a
block, a validator can update the last justified checkpoint only if the current epoch
has not started more than 8 slots ago. This particular condition is what the patch
has introduced to prevent a liveness attack (see subsection III.3.2).
Algorithm 4 Sync
1: procedure sync(tree, slot, attestation, role, lastJustifiedCheckpoint,)
2: start syncBlock(slot, tree)
3: start syncAttestation(attestation)
4: repeat
5: previousSlot← slot

6: slot← ⌊ time in seconds since genesis block / 12 ⌋
7: if previousSlot ̸= slot then ▷ If we start a new slot
8: roleSlotDone← false
9: if validatorIndexp = getProposerIndex(getSeed(current epoch), slot) then
10: append ROLE_PROPOSER to rolep

11: if validatorIndexp ∈ computeCommittee(getSeed(current epoch), slot) then
12: append ROLE_ATTESTER to rolep

13: if slot (mod 32) = 0 then ▷ First slot of an epoch
14: jutificationFinalization(tree, lastJustifiedCheckpoint)
15: until validator exit

Algorithm 5 Sync Block
1: procedure syncBlock(slot, tree)
2: upon ⟨PROPOSE, (sloti, hash(headBlocki), randaoReveali, contenti)⟩ from validator i

do
3: block ← ⟨PROPOSE, (sloti, hash(headBlocki), randaoReveali, contenti)⟩
4: if isValid(block) then
5: if slot (mod 32) ≤ 8 then
6: update justified checkpoint if necessary

Algorithm 6 Sync Attestation
1: procedure syncAttestation(attestation)
2: upon ⟨ATTEST, (sloti, headBlocki, checkpointEdgei)⟩ from validator i do
3: attestationi ← ⟨ATTEST, (sloti, headBlocki, checkpointEdgei)⟩
4: if isValid(attestationi) then
5: attestation[i]← attestationi

Algorithm9 can be considered themost intricate. This algorithm is responsible
for justifying or finalizing the checkpoints at the end of each epoch. To do so,
it counts the number of checkpoint votes with the same source and target. If
this number corresponds to more than 2/3 of the stake of all validators, then the
target is considered justified for the validator running this algorithm. The last four

34



Algorithm 7 Get Head Block
1: procedure getHeadBlock( )
2: block ← block of the justified checkpoint with the highest epoch
3: while block has at least one child do
4: block ← argmax

b′ child of block weight(tree,Attestation, b′)
5: (ties are broken by hash of the block header)
6: return block

Algorithm 8Weight
1: procedure weight(tree,Attestation, block)
2: w ← 0

3: for every validator vi do
4: if ∃a ∈ Attestation an attestation of vi for block or a descendant of block then
5: w ← w+ stake of vi
6: return w

conditions concern finalization. They verify among the last four checkpoints which
one fulfills the conditions to become finalized. The conditions to become finalized
are formally described in subsection III.2.1 and can be summarized as follows: the
checkpoint must be the source of a supermajority link, and all the checkpoints
between the source and target, inclusive, must be justified.
Algorithm 9 Justification and Finalization
1: procedure jutificationFinalization(tree, lastJustifiedCheckpoint)
2: source← lastJustifiedCheckpoint

3: target← the current checkpoint
4: nbCheckpointV ote← countMatchingCheckpointVote(source, target)
5: ▷ justification process:
6: if nbCheckpointV ote ≥ 2

3∗ total balance of validators then
7: target.justified← true
8: lastJustifiedCheckpoint← target

9: ▷ finalization process:
10: A,B,C,D ← the last 4 checkpoints ▷WithD being the current checkpoint.
11: if A.justified ∧ B.justified ∧ (A J−→ C) then
12: A.finalized← true ▷ Finalization of A
13: if B.justified ∧ (B J−→ C) then
14: B.finalized← true ▷ Finalization of B
15: if B.justified ∧ C.justified ∧ (B J−→ D) then
16: B.finalized← true ▷ Finalization of B
17: if C.justified ∧ (C J−→ D) then
18: C.finalized← true ▷ Finalization of C

The pseudo-randomness requires a different seed for each epoch to yield dif-
ferent results. This is ensuredby hashing the RANDAOmix and the epochnumber,
as shown in Algorithm 11. Adding the epoch number is helpful if no block is pro-
posed during an entire epoch. This corner case would always result in the same
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Algorithm 10 Get randao mix
1: procedure getRandaoMix(epoch)
2: mix← 0

3: headBlock ← getHeadBlock()
4: for each block parent of headBlock and belonging to epoch do
5: mix← mix⊕ hash(block.randaoReveal) ▷ ⊕ is a bit-wise XOR operator
6: returnmix

Algorithm 11 Get seed
1: procedure getSeed(epoch)
2: mix← getRandaoMix(epoch− 2) ▷ The seed of an epoch i is based on the randao

mix of epoch i− 2

3: return hash(epoch+mix)

seed if it were not for the epoch number.
The RANDAO mix is computed in Algorithm 10. The computation of the RAN-

DAO mix for a given epoch consists of XORing all the randaoReveal values of the
blocks in that particular epoch. We consider only the blocks of that particular
epoch that belong to the canonical chain.

The RANDAO mix of epoch e− 2 determines the role of validators in epoch e.
Hence, with Algorithm 14, as soon as epoch e − 2 is over, validators can know to
which committee they belong at epoch e. computeCommittee (Algorithm 14) is the
function that, given a seed and an epoch, returns the list of validator indices cor-
responding to the committee for the specified slot. The number of validators in
each committee9 is computed to be less thanN/32 (with n being the total number
of validators). Then, using the shuffled index computed with Algorithm 12, a com-
mittee of the given size is drawn according to the slot in question. All committee
validators will have to perform the role of attester during this slot.

Since the balance can change until the previous epoch, block proposers are
known at the end of epoch e − 1 for epoch e. Algorithm 13 handles the selection
of a proposer for a designated slot. It starts by creating a seed specifically for the
slot in question. Then, a loop starts with a pseudo-random selection of the val-
idator’s index. The loop stops only when a validator meets the condition criteria.
This condition is equivalent to being selected with a probability depending on the
balance. Thus, the validator with index proposerIndex is selected with probability
effectiveBalance

32
, with effectiveBalance being the stake of proposerIndex capped at 32,

i.e., min(balance, 32).
Both Algorithm 13 and 14 use Algorithm 12 to imbue randomness in the pro-

poser and committee selection. As mentioned in section III.2, Algorithm 12 stems
from the algorithm swap-or-not [HMR12]. Its name helps us understand the prin-
ciple behind the algorithm: select a validator and its opposite (based on a pivot)

9 ↑ In the actual implementation, committees have a maximum size of 2048 [Fou24].
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and swap them or not. The selection of the validator and the swap depend on the
value of a hash. An essential aspect of this algorithm is that it can get the index of
validators in the shuffled list without having to compute the shuffling of the whole
list of validators. This reduces unnecessary computation.
Algorithm 12 Compute shuffled index
1: procedure computeShuffledIndex(index, seed, nbV alidators)
2: for i = 0 to 90 do
3: pivot← hash(seed+ i) (mod nbValidators)
4: flip← pivot+ nbV alidators− index (mod nbValidators)
5: position← max(index, flip)

6: bit← hash(seed+ i+ position) (mod 2)

7: if bit = 0 (mod nbValidators) then
8: index← flip

9: return index

Algorithm 13 Get proposer index
1: procedure getProposerIndex(seed, slot)
2: MAX_RANDOM_BYTE← 28 − 1

3: i← 0

4: proposerSeed← hash(seed+slot)
5: nbV alidators← length(listV alidator)
6: while true do
7: proposerIndex← listV alidator[computeShuffledIndex(i, seed, nbV alidators)]
8: randomByte← first byte of hash(proposerSeed+ i (mod nbV alidators))
9: effectiveBalance← listV alidators[proposerIndex].effectiveBalance
10: if effectiveBalance ∗ MAX_RANDOM_BYTE ≥ MAX_EFFECTIVE_BALANCE ∗randomByte

then
11: return proposerIndex

12: i← i+ 1

Algorithm 14 Compute Committee
1: procedure computeCommittee(seed, slot)
2: committee← [ ]

3: nbValidatorByCommittee← ⌈lenght(listV alidator)/32⌉
4: for i = (slot (mod 32))∗nbValidatorByCommittee to (slot + 1

(mod 32))∗nbValidatorByCommittee −1 do
5: committee.append(listV alidator[computeShuffledIndex(i, seed, nbV alidators)])
6: return committee

III.3 . Robustness Analysis

Wenowhave formalized the protocol and the blockchain properties necessary
for our analysis. We will start by analyzing if the protocol is safe, and then if is live.
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III.3.1 . Safety

In order to prove the safety of the protocol, we begin by presenting lemmas
concerning the justification of checkpoints. The first lemma rules out the possibil-
ity of two different justified checkpoints having the same epoch. New validators
that want to join the set of validators must send the amount they wish to stake
to a specific smart contract10. This transaction triggers the process for a validator
to join the set of validators. The last step required for the activation of a valida-
tor (allowing it to send attestations and propose blocks) requires that the block
adding the validator to the validator set gets finalized11. This means that the set of
validators is fixed between two finalized checkpoints.
Lemma III.1. If checkpoints C and C ′ of the same epoch e are justified, it must nec-
essarily be that C = C ′.

Proof. By hypothesis, we know that Byzantine validators are at most f < n/3. For
the sake of contradiction, let us assume that C and C ′ are different checkpoints.
LetV be the set of at least 2n/3−f honest validators that cast a checkpoint vote for
checkpointC in epoch e, andV ′ be the set of at least 2n/3−f honest validators that
cast a checkpoint vote for checkpoint C ′ in epoch e. The intersection of the two
sets of honest validators is |V ∩V ′| ≥ (2n/3−f)+(2n/3−f)−(n−f) = (n/3−f) >
0. |V ∩V ′| > 0 implies that at least one honest validator voted for both checkpoint
C and checkpoint C ′ in epoch e. This is a contradiction since, according to the
protocol specification12, an honest process signs at most one unique block per
epoch. Therefore, C = C ′. This proves there cannot be more than one justified
checkpoint per epoch.

The following lemma explains why the finalization of a checkpoint necessarily
means that a checkpoint cannot be justified on a different chain afterward.
Lemma III.2. If a checkpoint C of epoch e is finalized on chain c, and a checkpoint C ′

of epoch e′ is justified on chain c′ with e′ > e, it necessarily means that c and c′ have a
common prefix until epoch e.

Proof. C ′ being justified on chain c′ means that at least 2n/3−f honest validators
must have cast a checkpoint vote with C ′ as the checkpoint target for epoch e′.

10 ↑ Currently, 32 ETH is needed to become a validator.
11 ↑ The exact process involves placing the validator in the activation queue to be finalized.

See more at https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-
chain.md.

12 ↑ This is specified in the specs https://github.com/ethereum/consensus-specs/
blob/dev/specs/phase0/validator.md#attester-slashing, and implemented
in the actual client Prysm https://github.com/prysmaticlabs/prysm/blob/
0fd52539153e32cfbd0a27ee51f253f8f6bb71c4/validator/client/attest.go#L140. This
corresponds to the only attestation done by an honest validator during an epoch, see Algo-
rithm 4.
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For the sake of contradiction, let us say that c and c′ have a commonprefix until
epoch e−1 at most. For a checkpoint to be justified on chain c′ at an epoch strictly
superior to e, it implies that a set V ′ of at least 2n/3 − f honest validators must
have cast a checkpoint vote with a checkpoint target on chain c′ and a checkpoint
source with an epoch less than e− 1.

Checkpoint C of epoch e being finalized on chain c, we have two possibilities.
Either the checkpoint at epoch e+1 on chain c has been justified with checkpoint
C as the source, or the checkpoint at epoch e+2 on chain c has been justified with
checkpoint C as the source, and the checkpoint at epoch e + 1 is justified. Either
way, a justification occurred on chain c with checkpoint C as the source, and no
justification occurred on a different chain before its finalization.

Hence, we know that a set V of at least 2n/3 − f honest validators have cast
a checkpoint vote with C as the checkpoint source before a justification on any
other chain.

Seeing that |V ∩ V ′| > 0, at least one honest validator has cast a checkpoint
votewithC as the checkpoint source and then a checkpoint votewith a checkpoint
source of at most epoch e− 1 and a target on chain c′.

Therefore, at least one honest validator has cast a checkpoint vote with a
checkpoint source from an epoch less than e − 1 after seeing checkpoint C at
epoch e justified. However, the fork choice rule of the protocol (cf. Algorithm 7)
requires honest validators to vote on the chain with the highest justified check-
point. This contradiction proves the lemma.

We saw with Lemma III.1 that two checkpoints of the same epoch could not be
justified, hence finalized. We then showedwith Lemma III.2 that after a finalization
on one chain, no checkpoints could become justified on any other chain. These
are the conditions required to have safety, as we prove now.
Theorem III.1 (Safety). There cannot be two finalized checkpoints on different chains
in Ethereum PoS.

Proof. Thanks to Lemma III.1, we know that two different checkpoints C and C ′ of
the same epoch cannot be justified, hence finalized.

For the sake of contradiction, let us assume that two checkpoints C and C ′

are finalized on different chains c and c′ at epochs e and e′, respectively. We as-
sume without loss of generality that e < e′. C being finalized, we know thanks to
Lemma III.2 that C ′ cannot be justified on a different chain c′, let alone be final-
ized.

The blockchain preserves the property of safety at all times. The Ethereum
PoS is safe.
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Figure III.6: This figure serves as a summary of the signification of the main diagrams of
other figures.

III.3.2 . Probabilistic Liveness

Spoiler alert: the protocol is not guaranteed to be live; rather, it is probabilis-
tically live. This means that as time goes on, the probability of it being live ap-
proaches 1. However, the probability that it is not live is not zero, although it re-
mains very small. To prove this point, we will explain an attack that targets the
protocol’s liveness.

In order to explain this attack which is by nomeans simple we start by describ-
ing a simpler liveness attack called the bouncing attack. This attack delays finality
in a partially synchronous network after GST. Previous works also exhibit liveness
attacks against the protocol using the intertwining of the fork choice rule and the
finality gadget [Nak19a, NTT21]. To prevent this attack, the protocol now contains
a "patch" [Req19] suggested on the Ethereum research forum [Nak19b]. We show
that the implemented patch is insufficient, and this attack is still possible if certain
conditions are met. This is a probabilistic liveness attack against the Ethereum
Proof-of-Stake protocol. Our attack can happen with less than 1/3 of Byzantine
validators, as discussed in subsubsection III.3.3A. We also consider the adversary
to be static because Byzantine validators are chosen before the computation.
III.3.2A Bouncing Attack

The Bouncing Attack [Nak19a] describes a liveness attack where the suffix of the
chain changes repetitively between two canonical chains, thus preventing the chain
from finalizing any checkpoint. The Bouncing Attack exploits the fact that the
canonical chains should start from the justified checkpoint with the highest epoch.
It is possible for Byzantine validators to divide honest validators’ opinions by jus-
tifying a new checkpoint once some honest validators have already cast their vote
(made an attestation) during the asynchronous period before GST.

The bouncing attack becomes possible once there is a justifiable checkpoint in
a different branch from the one designated by the fork choice rule with a higher
epoch than the current highest justified checkpoint. A justifiable checkpoint is
a checkpoint that can become justified only by adding the checkpoint votes of
Byzantine validators. If this setup occurs, the Byzantine validators could make
honest validators start voting for a different checkpoint on a different chain, leav-
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Figure III.7: A bouncing attack presented in 3 steps. We have 10 validators, of which 3 are
Byzantines. The number inside each hexagon corresponds to the number of validators
who made a checkpoint vote with this checkpoint as target. 1st step: We start in a situa-
tion where there is a fork. A checkpoint is justified on one of the chains and a checkpoint
of a higher epoch is justifiable on the other. We are at the end of the third epoch in which
honest validators have divided their vote on each side. 2nd step: We have reached GST
at the beginning of the fourth epoch and 4 honest validators have already voted (rightfully
so). 3rd step: Here is themoment Byzantine validators take action and release their check-
point vote for the concurrent chain, thus justifying the previously forsaken checkpoint and
thereby changing the highest justifying checkpoint. By repeating this process, the bounc-
ing attack can continue indefinitely.

ing a justifiable checkpoint again for them to repeat their attack and thus making
validators bounce between two different chains and not finalizing any checkpoint.
Hence the name Bouncing attack.

Let us illustrate the attack with a concrete case. In Figure III.7, we show an
oversimplified case with only 10 validators, among which 3 are Byzantine. To oc-
cur, the attack needs to have a justifiable checkpoint with a higher epoch than the
last justified checkpoint. We reach this situation before GST, which is presented in
the left part of the figure. After reaching GST, Byzantine validators wait for honest
validators to make a new checkpoint justifiable. When a new checkpoint is justi-
fiable, the Byzantine validators cast their votes to justify another checkpoint, as
shown in the right part of the figure. This will lead honest validators to vote for the
left branch, thus reaching a situation similar to the first step, allowing the bounc-
ing attack to continue. The repetition of this behavior is the bouncing attack. We
emphasize this example in more detail in Figure III.8 by detailing the sequence
of votes allowing a "bounce" to occur and leaving a justifiable checkpoint on the
other branch.

III.3.3 . Implemented Patch

The explanation of the patch is described for the first time on the Ethereum
research forum [Nak19b]. The solution found to mitigate the bouncing attack is
to engrave in the protocol the fact that validators cannot change their minds re-
garding justified checkpoints after a part of the epoch has passed.

The goal of the proposed solution is to prevent the possibility of justifiable
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Figure III.8: This figure presents a detailed version of the bouncing attack. In this example,
we have a total of 100 validators, of which 23 are Byzantines. A block in a checkpoint cor-
responds to the block associated with that checkpoint. The number inside each hexagon
(hovering a block) corresponds to the number of validators who made a checkpoint vote
with this checkpoint as target. We distinguish between two sorts of checkpoint votes, the
Byzantine ones, which are bi-color rectangles, and the honest ones, which are uni-color
rectangles. We compile the 3 steps of Figure III.7 in 2 with more information on how jus-
tification’s turning point is accomplished because of the Byzantine agents. First step: We
begin from a situation where epoch e−1 just ended and we now reach GST. Notice that the
canonical chain is chainA because the checkpoint with the highest epoch is on chainA but
not chain B. Second step: In this step, the checkpoint vote released during epoch e can
change the last justified checkpoint to change the canonical chain for chain A to chain B.
Byzantine validators released their checkpoint vote from the previous epoch during epoch
e. They send their last checkpoint vote at slot 23 once the checkpoint of epoch e on chain
A has reached 44, thus becoming justifiable (i.e., not yet justified but with enough votes
so that Byzantine validators can justify it). This triggers the canonical chain to change from
chain A to chain B starting the bounce.
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checkpoints being left out by honest validators. To prevent honest validators
from leaving a justifiable checkpoint, the patch must stop validators from chang-
ing their view of checkpoints before more than 1/3 of validators have cast their
checkpoint vote. This condition stems from the fact that we reckon the propor-
tion of Byzantine validators to be at most 1/3 − ϵ. To apply this condition, the
patch designates a number of slots after which honest validators cannot change
their view of checkpoints. Since validators are scattered equally among the differ-
ent slots to cast their vote (in attestations) within a specific time frame, stopping
validators from changing their view after a certain number of slots is equivalent
to stopping them from changing their view after a certain proportion of validators
have voted. This does appear to be a solution to prevent Byzantine validators from
influencing honest validators into forsaking a checkpoint that is now justifiable for
them.

To enforce this behavior, called the "fixation of view," the protocol has a con-
stant j called SAFE_SLOTS_TO_UPDATE_JUSTIFIED in the code (cf. Algorithm 5 in
subsection III.2.2). This constant is the number of slots13 during which validators
can change their view of the justified checkpoints. The patch introducing this con-
stant j mentions a possible attack called the splitting attack. As they point out,
the splitting attack relies on a "last minute delivery" strategy whereby releasing a
message late enough causes some validators to consider it too late while others
do not. This could split the validators into two different chains, unable to recon-
cile their views before the end of the epoch. After the beginning of the next epoch
views can be reconciled during j slots however the split can occur once again by
another last minute delivery. They consider the assumption that attackers can
send a message at the right time to split honest validators too strong. In subsub-
section III.3.3A, we present a new attack inspired by the splitting attack with more
realistic assumptions.

III.3.3A Probabilistic Bouncing attack - why the patch is not enough

In this part, we present our novel attack against the protocol of Ethereum Proof-
of-Stake. The attack is visually explained in Figure III.9.

Attack Condition. Our attack takes place during the synchronous period and
uses the power of equivocation by Byzantine processes. Equivocation is caused
by a Byzantine process that sends a message only to a subset of validators at a
given point in time and potentially another message or none to another subset of
validators. The effect is that only a part of the validators will receive the message
on time. More in detail, the bounded network delay is used by a Byzantine valida-
tor to convey a message to be read on a specific slot by some validators and read

13 ↑ At the time of writing this manuscript, j = 8 [Fou24].
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Figure III.9: This figure presents the probabilistic bouncing attack. In this example, we
consider 100 validators, of which 10 are Byzantine. A block in a checkpoint corresponds
to the block associated with that checkpoint. The number inside each hexagon (hovering
a block) corresponds to the number of validators who made a checkpoint vote with this
checkpoint as the target. The example starts at the slot before the attack in step 1. GST
has been reached in epoch e and honest validators have started to vote on chainA. This is
the correct action because the justified checkpoint with the highest epoch is on chainA (at
epoch e−2). During the next slot in step 2, before reaching limitSlot, a Byzantine validator
sends a blockwith withheld votes for the checkpoint at epoch e−1 on chainB. It is released
just in time for a set of honest validators to consider it and too late for the remaining
validators. The honest validators that see the block in time will update their view of the
justified checkpointwith the highest epoch and consider chainB as the canonical chain. We
now showhow the epoch continues with step 3. The block produced by a Byzantine, having
been released just in time, causes (1/3) of honest validators to change their view. This
results in a situation where Byzantine validators can perform the same attack during the
next epoch provided that at least one Byzantine validator is selected to be block proposer
on chain A for one of the first 8 slots.
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on the next slot by the other validators. Note that if a protocol is not tolerant to
equivocation, then it is not BFT (Byzantine Fault Tolerant), since equivocation is
the typical action possible for Byzantine validators.
Attack Description and Analysis Let β ≤ f/n be the fraction of Byzantine val-
idators in the system. The attack setup is the following. First, as in the traditional
bouncing attack, we start in a situation where the network is still partially syn-
chronous. A fork occurs and results in the highest justified checkpoint being on
chainA at epoch e, and a justifiable checkpoint at epoch e+1 on chainB. Assume
now that GST is reached. The attack can proceed14 as follows:

1. Since GST is reached, the network is fully synchronous. ChainA is the canon-
ical chain for all validators.

2. Just before validators must stop updating their view concerning the justi-
fied checkpoint (i.e., before reaching the limit of j slots15 in the epoch cor-
responding to the condition in line 6 of Algorithm 5), a Byzantine proposer
proposes a block (cf. Algorithm 2) on chain B. This block contains attesta-
tions with enough checkpoint votes to justify the justifiable checkpoint left
by honest validators. The attestations included in the block are those of
Byzantine validators that were not issued in the previous epoch when they
were supposed to be. The block must be released just in time, that is, right
before the end of slot j, so that (1/3−β) of the validators change their view
of the canonical chain to be active on chain B while the rest of the honest
validators continue on chain A. This is possible due to the patch preventing
validators from changing their mind after j slots.

3. Repeat the process.
An important aspect to consider in the attack is the probability of Byzantine val-

idators becoming proposers. This is crucial because, without the role of proposer,
validators cannot propose blocks and add new attestations containing checkpoint
votes on the concurrent chain.16 The probability of being selected to be a proposer
directly impacts how long the probabilistic bouncing attack can continue. In the
following theorem, we establish the probability of a probabilistic bouncing attack
lasting for a specific number of epochs.

14 ↑ Note that before GST, no algorithm can ensure liveness since communication delaysmay not
be bounded.

15 ↑ At the time of writing, 8 slots.
16 ↑ Note that Byzantine validators cannot use their role as proposer during the previous epoch

to release a block with the right attestations because it might not be the last block of the epoch.
Indeed, because some honest validators are on the concurrent chain, they add blocks. The check-
point votes contained in the Byzantine attestations must be on the same chain as the attestation
to justify the justifiable checkpoint, making the checkpoint justifiable in the first place.
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Figure III.10: The figure presents the probability of the bouncing attack depending on the
proportion of Byzantine validators β and the number k of epochs during which the bounc-
ing attack lasts. The probability is computed based on Equation III.1, knowing thatα = 1−β.

Theorem III.2. The probabilistic bouncing attack occurs during k epochs after GST
and a favorable setting with probability:

P (bouncing k times) = (1− αj)k, (III.1)
with α ∈ [0, 1] being the proportion of honest validators and j the number of slots

before locking a choice for justification.

Proof. We denote by α the proportion of honest validators and j the number of
slots before locking the choice for justification. We want to know the probability
of delaying the finality for k epochs. Once we assume a setup condition sufficient
to start a probabilistic bouncing attack, the attack continues until it becomes im-
possible for Byzantine validators to cast a vote to justify the justifiable checkpoint.
To cast their vote, Byzantine validators need one of the j first slots of the concur-
rent chain to have a Byzantine validator as proposer. Considering the probability
of choosing between each validator, the chance for a Byzantine validator to be
a proposer for one of the first j slots is (1 − αj), with α being the proportion of
honest validators. For k epochs, we take this result to the power of k.

We depict the probability of the bouncing attack over time with several pro-
portions of Byzantine validators β in Figure III.10. The closer the proportion of
Byzantine validators is to 1/3, the higher the probability of the attack lasting for k
epochs (for any k).

The probability of the bouncing attack continuing for k epochs depends on two
factors: α (= 1−β), the proportion of honest validators that cannot be controlled,
and j, the number of slots beforewhich validators are allowed to switch branches.
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Reducing j to 0 would prevent the bouncing attack from happening (the proba-
bility falls to 0), but it would mean that validators are never allowed to change
their view of the canonical chain. This naive solution would create irreconcilable
choices among the set of validators and prevent any new checkpoint from being
justified, which is a more severe threat to the liveness of Ethereum PoS.

Reducing the number of slots during which validators can change their view
of the blockchain implies that different views cannot reconcile quickly. At the very
least, the window of opportunity for doing so gets smaller. Theoretically, the pro-
portion of Byzantine validators necessary to perform this attack is 1/n. This is be-
cause we assume a favorable setup and that Byzantine validators can send mes-
sages so that only a desired portion of honest validators receive them on time.
Our analysis focuses on the course of action of the attackers during the attack
rather than the conditions necessary for it to occur.

This analysis highlights the delicate balance between fixing the view of valida-
tors and letting them change their view too much. There is a non-zero probability
for the attack to last k epochs for any k. However, the probability starts to plum-
met rapidly. With a proportion of β = 0.3, the probability of the attack lasting 100
epochs17 is 0.02. Nonetheless, there is a non-negligible probability of delaying the
finalization for several hours even with β ≈ 0.25.

We conjecture that with the current design of Ethereum PoS, it is impossible to
completely avoid such issues. Attempts to patch this probabilistic bouncing attack
may not ensure a safe or live protocol; i.e., mitigating one attack might give rise to
other vulnerabilities. For example, committee-based blockchains with single-shot
finality employ complex systems to prevent conflicting and irreconcilable views
[ADPT18, APPT19, YMR+19]. These mechanisms typically require the exchange of
messages from a quorum of validators to update one’s perspective. However,
such mechanisms are not feasible in Ethereum PoS since halting the blockchain’s
availability is not an option. More broadly, this issue aligns with existing literature
[NTT21, LPR20] and their connections to the CAP theorem [Bre00]. Consequently,
a possible straightforward solution could be to transition to a classical BFT con-
sensus protocol with single-slot finality. Yet, such a change would fundamentally
alter the protocol and should not be considered a mere mitigation.

III.4 . Conclusion

In this study, wepropose anovel distinctionbetween thedefinitions of blockchain
liveness and availability properties. This distinction is crucial for pinpointing dif-
ferences betweenNakamoto-style consensus and BFT (Byzantine Fault Tolerance)
consensus, enabling a comparison between the two. We describe a framework
for a high-level description of how the Ethereum PoS (Proof of Stake) protocol

17 ↑ 100 epochs is about 10 hours.
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functions—a committee-based BFT protocol strongly inspired by Nakamoto-style
consensus. Through this formalization, we demonstrate that the Ethereum PoS
protocol satisfies the safety property and that no conflicting blocks can be final-
ized on different branches. We also present patches implemented to mitigate
some attacks demonstrated on previous and preliminary versions of the proto-
col. However, we exhibit an attack on finalization, showing that the Ethereum PoS
protocol exhibits probabilistic liveness.

We supplement our analysis with an examination of the protocol’s rewards
and incentives, which were not considered here, in Chapter IV. We are interested
in how the incentive mechanism can impact the safety of the protocol as well
as the behavior of rational validators. We intend to implement the probabilistic
attack and simulate its outcome while considering penalties.

Such analyses could be conducted empirically to closely monitor the actual
behavior of the validators, especially in scenarios where an attack occurs.
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Ethereum PoS Analysis under the
Distributed Computing Model with
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B
eginning with the consensus part of the protocol without the incentives,
it now remains to consider them. We knew from the beginning that tak-
ing into account the incentives would yield different results. However the

complexity of the protocol was such that a first analysis focusing solely on the con-
sensus part was necessary. We start this chapter by precising the network model
for this analysis. It is very similar to the previous one but note that we define an
initial Byzantine proportion because it will vary during our analysis. We also re-
define some properties and explain the protocol succinctly as a remainder. Then
comes the analysis of the incentive mechanism called inactivity leak.

IV.1 . System Model

The model for our analysis is defined in Chapter II. For more clarity, there is a
point of clarification regarding the network conditions.
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During our analysis, we assume a network configuration where, during asyn-
chronous periods, honest validators are split into two distinct partitions. Commu-
nication between these partitions is restricted, simulating a scenario where two
regions are temporarily isolated from each other but maintain internal commu-
nication within each region. This setup emulates a situation where two regions
of the world are temporarily unreachable from one another while maintaining
unaffected communication within each region.

IV.2 . Protocol and Properties

In this section, we briefly remind the reader of the essential properties and def-
initions, as well as the necessary elements of the protocol previously described.

Ethereum PoS Properties Validators keep a local data structure in the form of
a tree containing all the blocks perceived, and then a consensus protocol helps to
choose a unique chain in the tree. Ethereum has a particular trait that consists of
having a finalized chain as the prefix of a chain vulnerable to forks. Ametaphor for
this is that the finalized chain is the trunk that possibly supports various branches,
and as time passes, the trunk grows and branches are trimmed1.

Intuitively, the Safety property of Ethereum states that the finalized chain is
not forkable, while the Liveness property states that the finalized chain always
grows. The nuance with respect to classical consensus protocols is the existence
of an Availability property on the entire chain that guarantees constant growth of
the chain despite failures and network partitions. The complete definition can be
found in section III.1.

Based on the definition of safety, we consider forkswithin the finalized chain as
a loss of Safety. As explained in the subsequent section, forks occurring within the
candidate chain suffix, which has not yet been finalized, are resolved by the fork
choice rule of the protocol. This rule determines the chain upon which validators
vote and build. However, this rule has not been explicitly designed to handle forks
impacting the finalized chain.

The protocol is not intended to fork the finalized chain, as the finalization pro-
cess depends on a super-majority vote, ensuring Safety when the Byzantine stake
is less than one-third, i.e., β0 < 1/3. We look at two types of Safety loss: (1) the
finalization of two conflicting chains, and (2) the break of the Safety threshold,
meaning the Byzantine stake proportion is more than one-third.

IV.3 . Safety Attack

1 ↑ We use the terms “chain” and “branch” interchangeably.
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The attestation contains two votes, a block vote and a checkpoint vote. The block
vote is used in the fork choice rule, which determines the chain to vote and build
upon for validators. As its name suggests, the checkpoint vote points to check-
points constituting the chain. It is used to justify and finalize blocks to grow the
finalized chain. Justification is the step prior to finalization. If validators controlling
over two-thirds of the stake make the same checkpoint vote, then the checkpoint
target is justified. Finalization occurs when there are two consecutive justified
checkpoints (one in epoch e and the following one in epoch e+ 1).

Let us note that if justification occurs only every other epoch, finalization is not
possible.

IV.3.1 . Incentives

The Ethereum PoS protocol provides validators with rewards and penalties to
incentivize timely responses for reaching consensus. There are three different
types of penalties: slashing, attestation penalties, and inactivity penalties.

(i) Slashing penalties. Validators face slashing if they provably violate specific
protocol rules, resulting in a partial loss of their stake and expulsion from the
validator set.

(ii) Attestation penalties. To incentivize timely and correct attestations (votes),
the protocol rewards validators for adhering to the protocol and penalizes those
who do not. If an attestation is missing or belatedly incorporated into the chain,
its validator gets penalized.

(iii) Inactivity penalties. Each epoch a validator is deemed inactive, its inactivity
score increments. However, if the protocol is not in an inactivity leak, all inactivity
scores are reduced.

When finalization occurs regularly, a validator that is deemed inactive only re-
ceives attestation penalties. This changes when there is no finalization for four
consecutive epochs: the inactivity leak begins. During the inactivity leak, which
starts when there is no finalization for four consecutive epochs, all validators will
receive inactivity penalties directly linked to their stake and inactivity score. The
inactivity score varies with the validator’s activity.

In addition to penalties, rewards are attributed for timely and correct attesta-
tions but not during the inactivity leak. Our analysis of the impact of the inactivity
leak on the protocol takes into consideration the slashing and inactivity penalties
across five different scenarios (cf. section IV.5).

Having provided a comprehensive overview of the Ethereum PoS consensus
mechanism, we are now well-positioned to delve into the specifics of the inactivity
leak.

IV.4 . Inactivity Leak
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The EthereumPoS blockchain strives for the continuous growth of the finalized
chain. Consequently, the protocol incentivizes validators to actively finalize blocks.
In the absence of finalization, validators incur penalties.

The inactivity leak, introduced in [BG17], serves as a mechanism to regain fi-
nality. Specifically, if a chain has not undergone finalization for four consecutive
epochs, the inactivity leak is initiated. During the inactivity leak, the stakes of in-
active validators are drained until active validators amount to two-thirds of the
stake. A validator is labeled as inactive for a particular epoch if it fails to send an
attestation or sends one with a wrong target checkpoint.

During the inactivity leak, there are no more rewards given to attesters2, and
additional penalties are imposed on inactive validators.

IV.4.1 . Inactivity Score

The inactivity score is a dynamic variable that adjusts based on a validator’s
activity. The inactivity score of a validator is determined based on the attestations
contained in the chain. It is important to note that if there are multiple branches,
a validator’s inactivity score depends on the selected branch. Within an epoch,
being active on one branch implies3 inactivity on another (for honest validators).

More precisely, the inactivity score is updated every epoch: if validator i is
active, then its inactivity score is reduced by 1; otherwise, 4 is added to it. When
the inactivity leak is not in place, the inactivity scores are decreased by 16 every
epoch, which often nullifies low inactivity scores.

During an inactivity leak, at epoch t, the inactivity score, Ii(t), of validator i is:Ii(t) = Ii(t− 1) + 4, if i is inactive at epoch t

Ii(t) = max(Ii(t− 1)− 1, 0), otherwise. (IV.1)

Each attester thus has an inactivity score that fluctuates depending on its (in)activity.
In the protocol, the inactivity score is always greater than zero. A validator’s inac-
tivity for epoch t is determined bywhether it sent an attestation for this epoch and
if the sent attestation contains a correct checkpoint vote. Here "correct" implies
that the target of the checkpoint vote belongs to the considered chain.

IV.4.2 . Inactivity penalties

Validators that are deemed inactive incur penalties. Let si(t) represent the
stake of validator i at epoch t, and let Ii(t) denote its inactivity score. The penalty
at each epoch t is Ii(t − 1) · si(t − 1)/226. Therefore, the evolution of the stake is
expressed by:

si(t) = si(t− 1)− Ii(t− 1) · si(t− 1)

226
. (IV.2)

2 ↑ Actually, the only rewards that remain are for the block producers and the sync committees.
3 ↑ This is true as long as the chains differ for at least one epoch.
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IV.4.3 . Stake’s functions during an inactivity leak

In this work, we model the stake function s (see Equation IV.2) as a continuous
and differentiable function, yielding the following differential equation:

s′(t) = −I(t) · s(t)
226

. (IV.3)
We then explore three distinct validator behaviors during an inactivity leak,

each influencing their inactivity score and, consequently, their stake.
(a) Active validators: they are always active.
(b) Semi-active validators: they are active every two epochs.
(c) Inactive validators: they are always inactive.
Note that, in the case of a fork, this categorization depends on the specific

branch under consideration as different branches may yield different evaluations
of each validator’s behavior.

This categorization is orthogonal to the Byzantine-Honest categorization. For
instance, an honest validator can appear inactive in one branch due to poor con-
nectivity or an asynchronous period (due to network partition or congestion). On
the other hand, a Byzantine validator intentionally chooses one of these behaviors
(e.g., being semi-active) to execute the attacks.

We illustrate in Figure IV.1 the evolution of the validators’ stake depending on
their behaviors. We also account for the ejection of validators with a stake lower
than or equal to 16.75.

Using these newly defined stake functions, we explore five scenarios in sec-
tion IV.5.

The first scenario, with only honest validators, serves as a baseline to assess
the impact of Byzantine validators. Even in this seemingly straightforward setting,
Safety is compromised.

In the second scenario, Byzantine validators come into play and aim to expe-
dite the finalization of conflicting branches. They do so by performing slashable
actions. Thus, they will get ejected from the set of validators once communication
is restored among honest validators and evidence of their slashable offense is in-
cluded in a block. We outline their impact based on their initial stake proportion.
With an initial stake proportion of β0 = 0.2, the finalization on conflicting chains
occurs after 3107 epochs. With β0 = 0.33, the conflicting finalization occurs only
after 503 epochs.

In the third and fourth scenarios, Byzantine validators exhibit non-slashable
behaviors. Specifically, Byzantine validators are semi-active, meaning they are ac-
tive on both chains but in a non-slashable manner. In the third scenario, they
aim to finalize conflicting branches as soon as possible, achieving conflicting fi-
nalization in 556 epochs with an initial stake proportion of β0 = 0.33. In the fourth
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Figure IV.1: This figure shows three different stake trajectories in the event of an inactivity
leak: the stake of a validator active every epoch, the stake of a validator active every other
epoch (semi-active), and an inactive validator. The inactive validators get ejected at epoch
t = 4685. The semi-active validators get ejected at epoch t = 7652. For reference, 5000
epochs is about 3 weeks.

scenario, their goal is to increase their stake proportion to exceed the 1/3 thresh-
old.

The last scenario delves into the effect of the probabilistic bouncing attack
regarding the Byzantine stake proportion, considering the inactivity leak. In this
attack, Byzantine validators initially aim to delay finality by being alternately active
(bouncing) on both chains of a fork. This confuses honest validators, causing them
to also bounce from one chain to the other. We detail how to find the distribution
of honest validators’ stakes in this setting, considering the inactivity penalties. We
also cover how the Byzantine validators’ stake proportion can exceed 1/3 if their
initial proportion is close to 1/3.

The scenarios unfold within the context of a partially synchronous network
while offering a meticulous examination of the property of Safety and the evolu-
tion of the proportion of Byzantine validators. Each scenario’s initial conditions
and outcomes are summarized in Table IV.1.

IV.5 . Analysis

In this section, we study the robustness of the Safety property within the con-
text of the inactivity leak. By construction, in the case of a prolonged partition, two
different chains can potentially be finalized, leading to conflicting finalized blocks.
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Scenario Outcomes
IV.5.1 All honest 2 finalized branches

IV.5.2A Slashable Byzantine 2 finalized branches
IV.5.2B Non slashable Byzantine 2 finalized branches
IV.5.2C Non slashable Byzantine β > 1/3

IV.5.3 Probabilistic Bouncing attack β > 1/3 probably

Table IV.1: Analyzed scenarios associated with their outcomes. Initially the pro-
portion of Byzantine’s stake is smaller than 1/3 and is zero for the first scenario.
We delineate scenarios that can produce such a predicament.

Considering the presence of Byzantine validators, we study how the propor-
tion of Byzantine validators’ stake evolves during an inactivity leak. Furthermore,
we are interested in scenarios where the inactivity leak mechanism becomes the
backbone of an attack strategy, potentially causing the proportion of Byzantine
stakes to exceed the 1/3 security threshold (cf. subsubsection IV.5.2C and subsec-
tion IV.5.3).

IV.5.1 . GST upper bound for Safety

In this first subsection, we look for an upper bound on GST before which no
finalization on conflicting chains can happen in case of a partition. We study the
case of an inactivity leakwith these conditions: (i) only honest validators, noByzan-
tine validators, and (ii) the network is asynchronous (before GST).

In case of catastrophic events, during an instance of a particularly disrupted
network, an arbitrarily large set of honest validators might be unreachable be-
fore GST. During this asynchronous period, the subset of validators still commu-
nicating with each other will continue to try to finalize new blocks. We assume
that, within each partition, the message delay is bounded as in the synchronous
period; however, communication between partitions is not restored before GST.
As the system model mentions, Byzantine validators can communicate between
partitions without restriction but cannot manipulate the message delay between
honest validators. The active validators must represent more than two-thirds of
the stake to be able to finalize. After 4 epochs without finalization, the inactivity
leak starts.

All the validators deemed inactive will have their stake progressively reduced.
This will continue until the active validators constitute at least two-thirds of the
stake and can finalize anew.
Two finalized chains A noteworthy scenario arises during asynchronous peri-
ods that can lead to a network partition and the creation of two distinct finalized
chains. If this partition persists for an extended period, both chains independently
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drain the stakes of validators they consider inactive until they finalize again. Al-
though the protocol permits this behavior by design, it results in finalizing two
conflicting chains, thereby compromising the Safety property.

This outcome aligns with Ethereum PoS prioritizing Liveness over Safety. How-
ever, to the best of our knowledge, this corner case has not been discussed in
detail.

We can theoretically assess the time required to finalize both branches of the
fork. Suppose honest validators remain in their respective branches due to the
partition. In this case, by understanding the distribution of these validators across
the partitions, we can compute the time it takes for the proportion of active val-
idators’ stake to return to 2/3 of the stake on each branch, permitting new final-
ization.

Let nH and nB denote the initial number of honest validators and Byzantine
validators at the beginning of the inactivity leak (nH + nB = n). Additionally, nH1and nH2 represent the number of honest validators active on branch 1 and on
branch 2, respectively (nH1 + nH2 = nH).

We denote by p0 = nH1/nH the initial proportion of honest validators remain-
ing active on branch 1, and 1 − p0 = nH2/nH represents the proportion of honest
validators active on branch 2 (hence inactive on branch 1). In this first scenario,
with only honest validators and no Byzantine validators, p0 represents the pro-
portion of all validators active on branch 1. Indeed, since nH/n = 1, we have that
nH1/nH × nH/n = p0.

We have assessed how validators’ stakes vary based on their level of activity.
Consequently, we can express the ratio of active validators on branch 1 at time t

as:
nH1sH1(t)

nH1sH1(t) + nH2sH2(t)
, (IV.4)

with sH1 and sH2 being the stake of honest active and inactive validators, respec-tively. We know the function of their stake according to time, and by dividing the
numerator and the denominator by the total number of validators (n = nH), we
can rewrite Equation IV.4 as:

p0
p0 + (1− p0)e−t2/225

. (IV.5)
The initial stake value s0 is factored out of the equation. This function is critical as
the moment it reaches 2/3 or more, finalization can occur4 on the branch.

To establish the upper bound on GST under which two conflicting branches
finalize, wemust find when finalization occurs on each branch for each initial pro-
portion of active validators p0 and inactive validators 1− p0. We simulate the evo-
lution of the ratio of active validators (Equation IV.5) during an inactivity leak with

4 ↑ With a proportion of two-thirds of validators’ stake active, justification and then finalization
can occur in 2 epochs.
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Figure IV.2: Evolution of the ratio of active validators depending on the proportion p0 of
active validators on the branch. This follows the ratio given in Equation IV.5 before regain-
ing 2/3 of active validators or the expulsion of inactive validators at epoch t = 4685.

different values of p0 in Figure IV.2. The simulation starts with both active and
inactive validators at 32 ETH. At epoch 0, the inactivity leak begins.

For p0 = 0.5 or less, the ratio jumps to 1 at t = 4685; this is due to the fact
that validators with a stake below 16.75 ETH are ejected from the set of valida-
tors. Conversely, for p0 = 0.6, the proportion of active validators does not jump
drastically as 2/3 of active validators is regained before the ejection of inactive
validators, permitting the active validators to finalize, hence ending the inactivity
leak. Interestingly, with p0 = 0.6 we can see that the ratio still increases several
epochs after the proportion of 2/3 of active validators’ stake is reached. This is
because the penalties for inactive validators take some time to return to zero.

As expected and shown by Figure IV.2, a chain with more active validators will
regain finality faster. To ascertain how quickly, we seek when the ratio is equal to
2/3. Taking into account the expulsion5 of inactive validators at t = 4685, we can
find the value t at which the 2/3 threshold is reached:

t = min
(√

225[log(2(1− p0))− log(p0)], 4685
)
. (IV.6)

This calculation pertains to 0 < p0 < 2/3 (when there are less than 2/3 of active
validators), ensuring that the epoch t can be computed.

Conflicting finalization occurs once the slowest branch to finalize has regained
finality. Our observation highlights that the lower the proportion of active valida-
tors, the slower the branch will regain finality. Hence, the fastest way to reach

5 ↑ We drew inspiration for this initial work from the insights presented in [Edg3 ].
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finality on both chains would be for honest validators to be evenly proportioned,
with half of the validators active on one chain and the other half on the other chain
(p0 = 1 − p0 = 0.5). In this case, the ratio of active validators amounts to 2/3 on
both chains at t = 4685 epochs (about 3 weeks). We can note here that even with
the best configuration to finalize quickly on conflicting branches, it is impossible
to be faster than 4685 epochs. Thus, with only honest validators, whatever their
proportion on each branch, the last chain to finalize will always finalize at t = 4685.

Finality on both chains is achieved precisely at 4686 epochs after the beginning
of the inactivity leak. Adding an epoch is necessary after gaining 2/3 of active stake
to finalize the preceding justified checkpoint. This finalization ends the inactivity
leak, which has lasted approximately 3 weeks. Any network partition lasting longer
than 4686 epochs will result in a loss of Safety because of conflicting finalization. This
is an upper bound for Safety on the duration of the inactivity leak with only honest
validators.

IV.5.2 . Upper bound decrease due to Byzantine validators

In a trivial setup with only honest validators, Safety does not hold if the in-
activity leak is not resolved quickly. This prompts us to study the scenario in the
presence of Byzantine validators to evaluate howmuch they will be able to hasten
the conflicting finalization. We describe two possible outcomes: the first one vio-
lates Safety, but Byzantine validators get slashed; the second one violates Safety
as well, but no validators get slashed. A slashing penalty entails an ejection from
the validator set as well as a loss of part of the validator’s stake. Both scenarios ex-
pedite the time t at which Safety is breached, with different velocities depending
on the chosen method.

We study the inactivity leak under these conditions: (i) at the beginning, less
than one-third of the stake is held by Byzantine validators (β0 = nB/n < 1/3), with
the rest held by honest validators (1−β0 = nH/n); (ii) the network is asynchronous
(before GST); and (iii) Byzantine validators are not affected by network partitions.6

The situation is as follows:
• Honest validators are divided into branches 1 and 2; a proportion p0 = nH1/nH

of the honest validators are active on branch 1, while a proportion 1 − p0 =

nH2/nH are active on branch 2. This means that on branch 1, a propor-
tion nH1/nH × nH/n = p0(1 − β0) are honest and active, and a proportion
nH2/nH × nH/n = (1− p0)(1− β0) are honest and inactive.

• Byzantine validators are not restricted to either partition; they are connected
6 ↑ In amodel without partitions, one needs to give Byzantine validatorsmore power to recreate

our scenario. They must be able to control the network delay to allow them to be active on both
branches while preventing honest validators from even observing the branch on which they are
not active. They can manipulate message delays between groups of honest validators to simulate
a partition between them.
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Figure IV.3: Byzantine validators are active on both chains of a fork simultaneously during
asynchronous times.

to both.

IV.5.2A With slashing

In the event of a fork during asynchronous times, Byzantine validators can be ac-
tive on both branches (Figure IV.3). Being active on two branches means sending
correct attestations on both every epoch. Such behavior is considered a slashable
offense, incurring penalties, but only if detected by honest validators. The slash-
able offense is punished once proof of conflicting attestations during the same
epoch has been included in a block. Thus, before GST, Byzantine validators could
operate on both branches without facing punishment as long as honest validators
are unaware of the conflicting attestations. Byzantine validators have control over
the message delay before GST, making this behavior possible. They can thereby
expedite the finalization on different branches.

We study here the time needed for finalization to occur on conflicting branches
depending on the proportion of Byzantine validators. The ratio of active validators
at epoch t is:

nH1sH1(t) + nBsB(t)

nH1sH1(t) + nBsB(t) + nH2sH2(t)
, (IV.7)

with sH1 , sB, and sH2 being the stake of honest active, Byzantine active, and honestinactive validators, respectively. This can be rewritten as:
p0(1− β0) + β0

p0(1− β0) + β0 + (1− p0)(1− β0)e−t2/225
. (IV.8)

where β0 represents the initial proportion of Byzantine validators, and p0 denotes
the initial proportion of honest active validators. In contrast to the analysis with
only honest validators (cf. Equation IV.5), here, Byzantine validators are present
and active on both chains. Nonetheless, as before, we can obtain the ratio of ac-
tive validators on the other branch just by interchanging p0 and 1− p0. Finality on
conflicting branches occurs when the last of the two branches finalizes. Similarly
to the previous example, the branch with the fewer initial honest active valida-
tors (p0) will finalize the latest. This happens t epochs after the beginning of the
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inactivity leak, with
t = min

(√
225
[
log(2(1− p0))− log(p0 +

β0

1− β0

)

]
, 4685

)
. (IV.9)

Finality on conflicting branches is achieved the quickest when honest valida-
tors are evenly split between the branches of the fork, at p0 = 0.5.

β0 t

0 4685

0.1 4066

0.15 3622

0.2 3107

0.33 502

Table IV.2: Time before finalization on conflicting branches depending on the ini-
tial proportion of Byzantine validators β0 for p0 = 0.5 with slashing behaviour
based on Equation IV.9

Table IV.2 gives the epoch at which concurrent finalization occurs for p0 = 0.5.
This outlines the rapidity at which finality can be regained depending on the initial
proportion β0 of Byzantine validators’ stake. The table shows that 503 epochs
(approximately 2 days) could suffice to finalize blocks on two different chains, but
hypothetically it could be quicker than that. In fact, as β0 gets closer to 1/3, the
number of epochs required before concurrent finalization occurs (Equation IV.9)
approaches 0.

The explanation is that if β0 were to start at exactly 1/3, then with p0 = 0.5,
it would mean that on each branch we would start with p0(1 − β0) + β0 = 2/3 of
active validators, hence finalizing immediately. This explains why if β0 is very close
to 1/3, the proportion of active validators reaches 2/3 rapidly. Hence, Byzantine val-
idators can expedite the loss of Safety. If their initial proportion is 0.33, they can make
conflicting finalizations occur approximately ten times faster than scenarios involving
only honest participants.

One can notice that if Byzantine validators act in a slashable manner, they will
be penalized after the asynchronous period ends. However, the harm is already
done. Once the finalization on two branches has occurred, the branches are irrec-
oncilable with the current protocol. Next, we demonstrate that Byzantine valida-
tors can employ more subtle strategies to break Safety without slashable actions.
IV.5.2B Without Slashing

Byzantine validators can hasten the violation of the Safety property without in-
curring a slashable offense. While not as rapid as being active on both branches
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Figure IV.4: Byzantine validators active on both branches of a fork alternatively during
asynchronous times.

simultaneously, they can be semi-active on both branches alternatively. Being
semi-active on each branch means they are only active every other epoch. This
approach diminishes their stake on each branch due to inactivity penalties. Nev-
ertheless, at some point, they can finalize on two conflicting branches by being
active two epochs in a row on one branch and then on the other (see Figure IV.4).
Byzantine validators will be able to finalize when the proportion of their stake plus
the proportion of the stake of honest active validators is above 2/3 on the branch
(cf. Equation IV.10).

At that point, Byzantine validators must remain active for two consecutive
epochs on each branch to finalize them both. If they are only semi-active, they
can alternate justifications for checkpoints on each branch but will not achieve
finalization. However, by maintaining activity for two consecutive epochs, first on
one branch and then on the other, they ensure two sequential justifications, lead-
ing to the finalization of a checkpoint.

We gave the different evolution of stakes depending on the activity of valida-
tors (subsection IV.4.3). Now that Byzantine validators are semi-active, their stake
follows the curve s0e

−3t2/228 . We simplify the ratio as previously and we get that
finalization occurs on the branch when the ratio

p0(1− β0) + β0e
−3t2/228

p0(1− β0) + β0e−3t2/228 + (1− p0)(1− β0)e−t2/225
(IV.10)

goes over 2/3, with β0 and p0 being the initial proportion of Byzantine validators
and the proportion of honest active validators on the branch, respectively.

In contrast to the previous scenario, obtaining an analytic solution for t to de-
termine the epoch when the ratio hits 2/3 is not straightforward. Therefore, we
apply numerical methods on Equation IV.10 with initial parameters p0 = 0.5 and
β0 = 0.33, resulting in a calculated t value of 555.65. This means it will take 556

epochs to finalize, about 2 days and a half.
As previously, the proximity of β0 to 1/3 significantly influences the speed of fi-

nalization, as outlined in Table IV.3 and Figure IV.5. Figure IV.5 shows how the pro-
portion of Byzantine validators affects the time of conflicting finalization. Notice
that although the acceleration is not as pronounced as in the previous scenario,
it remains noteworthy that Byzantine validators still exert a substantial impact on
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Figure IV.5: Time before finalization on conflicting branches, depending on the initial pro-
portion of Byzantine validators β0 and whether they engage in slashable actions.

breaching Safety, while not committing any slashable offense.
Hence, Byzantine validators can expedite the loss of Safety without committing any

slashable action. If their initial proportion is 0.33, they can make conflicting final-
izations occur approximately eight times faster than scenarios involving only honest
participants.

β0 t

0 4685

0.1 4221

0.15 3819

0.2 3328

0.33 556

Table IV.3: Time before finalization on conflicting branches depending on the ini-
tial proportion of Byzantine validators β0 for p0 = 0.5 without slashing behavior
based on Equation IV.10.

Another consequence of being "semi-active" on both branches is that Byzan-
tine validators can decide when to finalize on each branch. Indeed, even when the
proportion of their stake plus the proportion of honest active validators’ stake is
above 2/3, finalization only occurs when the Byzantine validators stay active for
two consecutive epochs on the same chain. Being active for two epochs will justify
the two consecutive epochs, thus finalizing an epoch.
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There exists a scenario in which the Byzantine validators might delay finaliza-
tion intentionally, aiming to increase their stake’s proportion beyond the thresh-
old of 1/3 without incurring slashing afterward.
IV.5.2C More than one third of Byzantine validators

One may ask, why would Byzantine validators aim at going over the 1/3 thresh-
old? Indeed, we have just shown that Safety can be broken regardless of β0; is it
not the ultimate goal of Byzantine validators? It is not obvious to determine what
behavior will harm the blockchain the most. We briefly discuss the impact Byzan-
tine validators can have when they go over the 1/3 threshold in subsection IV.5.3.
We now examine the necessary conditions on β0 and p0 that permit the Byzantine
validators’ stake to go over the one-third threshold.

The key ratio that translates into what we are looking for is the proportion of
Byzantine validators’ stake β(t, p0, β0) over time:

β0e
−3t2/228

p0(1− β0) + (1− p0)(1− β0)e−t2/225 + β0e−3t2/228
(IV.11)

As expected, at time t = 0, β(0, p0, β0) = β0. Now, let us investigate when this
ratio is above the threshold of 1/3, i.e.:

β(t, p0, β0) ≥ 1/3 (IV.12)
The main difference with the previous scenario is that Byzantine validators

seek to go over the 1/3 threshold, not to finalize quickly. This means that even
after the proportion of honest active validators’ stake and semi-active Byzantine
validators’ stake representsmore than two-thirds of the stake on the branch, they
do not finalize. Byzantine validators could finalize by staying active for two epochs
in a row, yet they do not do so in order to reach a higher stake proportion.

We construct a set containing the pairs (p0, β0) that can lead β to go over 1/3
(Equation IV.12). To do so, we take the point reached by the ratio when the valida-
tors deemed inactive are ejected. This point gives the highest value reachable7 for
a particular (p0, β0). For an intuition as to why this is the case, Figure IV.1 allows us
to visualize that the biggest gap between semi-active Byzantine stake and honest
inactive stake is at the moment of expulsion of the honest inactive validators. We
have seen that inactive validators are ejected from the chain after 4685 epochs.

7 ↑ There exist more values that can lead to going over one-third when considering a special
corner case. If the Byzantine validators strategically finalize just before the expulsion of honest
inactive validators, the decrease in inactivity penalties might not occur quickly enough to prevent
the ejection of honest inactive validators. In this particular scenario, Byzantine validators could
potentially eject honest inactive participants while incurring fewer penalties themselves. This sub-
tlety underscores the intricate dynamics at play during the inactivity leak.
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Figure IV.6: Pairs (p0, β0) such that βmax(p0, β0) ≥ 1/3. This figure gives a lower bound for
which (p0, β0) can result in the proportion of Byzantine validators exceeding 1/3 on both
branches.

We can thus evaluate the maximum ratio reachable βmax at time t = 4685 when
the inactive validators are ejected:

βmax(p0, β0) =
β0e

−3×(4685)2/228

p0(1− β0) + β0e−3×(4685)2/228
. (IV.13)

When this ratio is greater than 1/3, Byzantine validators have reached their
goal. We show with Figure IV.6 that Byzantine validators can actually go beyond
the threshold of 1/3 on both branches simultaneously. The lower bound β0 before
this becomes possible is for p0 = 0.5 when β0 = 1/1 + 4e−3×(4685)2/228 = 0.2421.

When the initial proportion of Byzantine validators is at least 0.2421, their propor-
tion can eventually increase to more than 1/3 of validators on both branches, exceed-
ing the critical Safety threshold of voting power in each branch.

Having explored scenarios in which protocol vulnerabilities manifest exclu-
sively before GST, we now focus on potential threats posed by Byzantine validators
after GST. Given the acknowledged impact of the Probabilistic Bouncing Attack on
Liveness (cf. subsubsection III.3.3A), our study extends to take the inactivity leak
into account.

IV.5.3 . Revisiting the Probabilistic Bouncing Attack

This subsection revisits the Probabilistic BouncingAttack subsubsection III.3.3A,
showing that Byzantine validators could exceed the Safety threshold even during
the synchronous period. Contrary to the previous scenarios, this one starts in the
asynchronous period but unfolds in the synchronous period. This demonstrates
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that the inactivity leak poses significant challenges even within the synchronous
period, revealing its broader implication for blockchain security.

As mentioned, while analyzing the probabilistic bouncing attack, we did not
consider the penalties. Here, we fill this gap.

Let us note that there is no problemwith conflicting finalization as the attack is
progressing after GST in the synchronous period. In synchronous time, there is not
enough delay for honest validators tomiss a finalization on another branch. There
would need to be more than two-thirds of the active stakes owned by Byzantine
validators to break Safety in the synchronous period.

We briefly discussed the differences in gravity between conflicting finalization
and having more than 1/3 of the stake owned by Byzantine validators. We left the
actual comparison and the in-depth analysis of the gravity of going beyond the
infamous threshold as future work.

We primarily focus on identifying specific scenarios that would disrupt the net-
work. Thus, we give a detailed explanation of a scenario that could lead to Byzan-
tine validators breaking the 1/3 threshold even during synchronous period (after
GST).

Let us remind how the attack takes place for self-containment.
Probabilistic Bouncing Attack Summary The attack can be summarized as
follows: (1) A favorable setup that partitions honest validators into two different
views of the blockchain occurs. (2) At each epoch, Byzantine validators withhold
their messages from honest validators, releasing them at the opportune time to
make some honest validators change their view. (3) This attack continues as long
as at least one Byzantine validator is proposer in the jth first slots of the epoch,
where j is a parameter of the protocol. The probability of the attack continuing
for k epochs with a proportion of (1− β0) honest validators is (1− (1− β0)

j)k.
We start by analyzing the outcomeof a forkwhere a proportion p0 of the honest

validators start on chain A and 1− p0 of the honest validators start on chain B.
We consider how a Probabilistic Bouncing Attack would unfold, taking the inac-

tivity leak into account. A probabilistic bouncing attack lastingmore than 4 epochs
will necessarily cause an inactivity leak. Knowing this, we analyze the stakes of
honest and Byzantine validators in this setting.

For this attack to continue, at each epoch, Byzantine validators cast their vote
with a different chain as their candidate chain. They are active on each chain
alternatively. Due to their inactivity every 2 epochs, they will get ejected from the
chain after a total of 7653 epochs (4 weeks and 6 days). Byzantine validators are
active on each chain to ensure that justification only happens every two epochs,
preventing finalization from occurring.

For this attack to continue indefinitely, Byzantine validators must ensure hon-
est validators are split into two branches according to two conditions: (a) the hon-
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Figure IV.7: This figure represents, using a Markov chain, the probability of an honest
validator changing branches or not every epoch. During the attack, the Byzantine validators
ensure that a proportion p0 of honest validators remains on one branch so they can justify
this branch later with their withheld votes (Equation IV.14).

est validators are not enough to justify a chain on their own, and (b) the Byzantine
validators can justify it afterwards with their withheld votes. This means that (a)
p0 must not represent more than 2/3 of the stake, and (b) the proportions p0 of
honest validators and β0 of Byzantine validators must represent more than two-
thirds of the total stake. The two necessary conditions are that (a) p0(1−β0) < 2/3

and (b) p0(1− β0) + β0 > 2/3. For the attack to function, we get that:
2− 3β0

3(1− β0)
< p0 <

2

3(1− β0)
. (IV.14)

We can see that the closer β0 is to 0, the closer p0 has to be from 2/3. This is to
be expected as otherwise the Byzantine validators would be unable to justify the
checkpoint with withheld votes.

An illustration of an ongoing attackwith the probability for honest validators to
be on one chain or the other is depicted in Figure IV.7. At each epoch, a proportion
p0 of honest validators is on one branch, whereas a proportion 1 − p0 is on the
other.
Analytical Evaluation We are interested in the evolution of the proportion of
Byzantine validators’ stake β during the attack. To examine this, we analyze the
evolution of the inactivity score over time for an honest validator randomly placed
at each epoch. Referring to Figure IV.7, we observe that after two epochs, there is
a probability p0(1− p0) of having been on branch B for both epochs or on branch
A for both epochs. The probability of being on both branches, regardless of the
order, is p20 +(1− p0)

2. From the perspective of a chain, validators will be deemed
inactive if they are active on the other chain. The probability of the inactivity score
evolution after two epochs is the following:

+8 : p0(1− p0)

+3 : p20 + (1− p0)
2

−2 : p0(1− p0)

(IV.15)
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We can notice that the time-dependent probability of the inactivity score is the
convolution of two random walks. The first random walk moves +4 with probabil-
ity p0 and -1 with probability (1− p0). The second is the opposite, moving +4 with
probability (1 − p0) and -1 with probability p0. We place ourselves in the continu-
ous case to be able to continue our analysis and find the stake of validators with
the inactivity score distribution over time (see section A.1 for details on the dis-
crete and continuous case). To do so, we use the fact that a random walk follows
a Gaussian distribution when time is large, using the central limit theorem. The
expectation of the two random walks are (5p0 − 4)t and (1 − 5p0)t, respectively,
with both having a standard deviation of 25p0(1− p0). We disregard here the fact
that the actual inactivity score is bounded by zero for analytical tractability. Allow-
ing for negative values in the inactivity score can result in a reward instead of a
penalty, which leads to a scenario conservatively estimating the loss of stake. The
convolution of these two random walks is the probability of the inactivity score I :

ϕ(I, t) =
1√
4πDt

exp

(
−(I − V t)2

4Dt

)
, (IV.16)

withD = 25p0(1−p0) and V = 3/2. It now remains to find the distribution function
of the stake s. We rewrite here the differential equation of the stake depending
on I previously described in Equation IV.17:

ds

dt
= −I(t)s

226
. (IV.17)

Using this (details in section A.2) we find the distribution function of the stake
s to be:

P (s, t) =
226

s
√

4
3
πDt3

exp

(
−(226 ln(s/32) + V t2/2)2

4
3
Dt3

)
, (IV.18)

withD and V , the diffusion and the velocity. In our case V = 3/2 andD = 25p0(1−
p0). The stake follows a log normal distribution for which the cumulative function
is:

F (s, t) =
1

2
+

1

2
erf

226 ln(s/32) + V t2/2√
4
3
Dt3

 . (IV.19)

Currently, the probability P does not reflect the actual stake according to time
since validators get ejected at 16.75 ETH and are stuck at 32 ETH. To emulate this
mechanism, since we know the cumulative distribution function, we can compute
the new probability law P :

P(x, t) =


F (a, t) if x = 0,

P (x, t) if a < x < b,

1− F (b, t) if x = b,

(IV.20)
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Figure IV.8: This is a representation of the distribution P at t = 4024 with an exaggerated
standard deviation to provide a better intuition of the distribution behavior.

with a = 16.75 and b = 32. This new probability law takes into account the fact
that if the stake is lower than 16.75 ETH, it becomes 0, and it is capped at 32 ETH.
The explicit expression of P reads:

P(x, t) =δ(x) · F (a, t) + δ(x− b) · (1− F (b, t))

+ [H(x− a)×H(b− x)] · P (x, t),
(IV.21)

where δ is the Dirac distribution, and H is the Heaviside function. Figure IV.8
shows a visual representation of the function P .

The associated cumulative distribution function F of P is:
F(x, t) =

∫ x

0

P(s, t) ds

= F (a, t) +H(x− a)[F (x, t)− F (a, t)]

+H(x− b)[1− F (x, t)].

(IV.22)

With this, we can evaluate the ratio of Byzantine validators and determine with
what probability it will go beyond 1/3. We denote by sB(t) the stake of Byzantine
validators and sH(t) the stake of an honest validator. We are looking for the prob-
ability such that

β(t) =
β0sB(t)

β0sB(t) + (1− β0)sH(t)
>

1

3
, (IV.23)

depending on the probability of sH that we now know. This translates into:
F
(

2β0

1− β0

sB(t), t

)
, (IV.24)
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where sB(t), the stake of a Byzantine validator, follows the stake of a semi-active
validator.

We provide a representation of Equation IV.24 for several values of β0 with
p = 0.5 (note that p0 has a minimal impact on the curve as it only slightly changes
the variance) in Figure IV.9.

The figure illustrates how the proximity of β0 to 1/3 can be detrimental. This
phenomenon occurs because the mean of the log-normal distribution approxi-
mates sB when t is not too large. Referring to Equation IV.24, we observe that if
β0 = 1/3, we are examining F(sB(t), t), which explains why the probability is 0.5.

The probability increases sharply just before the expulsion of Byzantine valida-
tors; however, it is unlikely that the probabilistic bouncing attack would persist for
that long. As an estimate, we can use the probability mentioned in the previous
chapter (Equation III.1) to provide an upper bound on the probability of reaching
epoch 7000: (1−(1−β0)

8)7000 is equal to 1.01×10−121 for β0 = 1/3. This essentially
negates any strategy by Byzantine validators that would require the probabilistic
bouncing attack to last that long.

However, as Figure IV.9 shows, with β0 nearing 1/3, Byzantine validators real-
istically have a high probability of quickly exceeding 1/3 of the stake, especially
considering the significant factor of the attack occurring on two branches. This
means that if a validator is active during an epoch on one branch, it is inactive on
the other. Hence, the probability can be doubled for each curve.

We can comprehend this by considering the case of β0 = 1/3: after two epochs,
the Byzantine validators have been active on each branch once. If one branch has
more validators that have been active on it for two epochs, the other branch will
have honest validators incurring, on average, more penalties than the Byzantine
validators. On this latter branch, the Byzantine stake will represent more than
one-third of the total stake.

These results imply that, theoretically, within the synchronous period and with a
proportion of Byzantine stake sufficiently close to 1/3 as well as a favorable initial
setup, the probabilistic bouncing attack can pose a threat to the blockchain by allowing
Byzantine validators to exceed the safety threshold of 1/3.

IV.6 . Discussion & Conclusion

Our work presents the first theoretical analysis of the inactivity leak, designed
to restore finalization during catastrophic network failure. We highlight situations
where Byzantine actions expedite the loss of Safety, either through conflicting finaliza-
tion or by increasing the Byzantine proportion over the one-third Safety threshold. No-
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Figure IV.9: We represent Equation IV.24 according to time with various β0.

tably, we demonstrate the possibility of Byzantine validators exceeding the one-
third Safety threshold even during synchronous periods.

Our findings underscore the critical role of penalty mechanisms in BFT anal-
ysis. By illuminating potential issues in the protocol design, we offer insights for
future improvement and provide tools to investigate them.

70



Chapter V

Ethereum PoS Protocol Analysis under the
Game Theoretical Model
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S
o far, we have analyzed the protocol through the lens of distributed sys-
tems, where agents were either honest or Byzantine. Although the sec-
ond analysis did take into account an important part of the incentives, the

model did not consider rational agents actually driven by incentives. In this final
analysis, our goal is to study the strategies and equilibrium that can arise if all
agents are rational. We aim to model agents with utility functions directly linked
to the protocol rewards.

We start by presenting the necessary elements of the protocol required for
our study. We then proceed with the definition of our game and its analysis.

V.1 . Ethereum protocol

We have simplified the complex functioning of the Ethereum Proof of Stake
(PoS) protocol into the essential components for our analysis. At a high level, the
set of participants, called validators, locally maintain a tree of blocks, denoted as
T . At any given moment, validators can evaluate the block tree to determine the
branch that constitutes the current canonical chain, using a function known as the
fork choice rule. The protocol requires validators to add new blocks to their local
tree of blocks and broadcast these blocks to other validators.

Upon receiving a new block, validators assess whether it extends their canon-
ical chain; if it does, a portion of them vote for it (attest to the block).
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Thanks to a finalization protocol, a growing prefix of the canonical chain is
maintained. This growing prefix cannot be forked, while the part of the chain
beyond this prefix is forkable. In this study, we are interested in the protocol
responsible for building the forkable part of the chain before finalization.

For our analysis, the elements of the protocol that we need are the following:
• Slot. Slots are the time frames dictated by the protocol for proposers and
attesters to perform certain actions.

• Proposer. There is one proposer per slot. The proposer’s role is to propose
a block during a specific slot.

• Attester. There are a attesters per slot. The attester’s role is to produce an
attestation, which is a vote for a specific block. Attestations determine the
weights of the blocks, which are used by the fork choice rule.

• Fork choice rule. The fork choice rule is the protocol’s rule that determines,
in case of a fork, which block is the head of the chain.

• Canonical chain. The canonical chain is the chain designated by the fork
choice rule.

Proposers and attesters are assigned to slots in a deterministic and verifiable
manner using a pseudo-random function included in the Ethereum protocol.
Fork Choice Rule As mentioned, despite their name, blockchains are closer to
block trees. Forks can occur, causing the blockchain to have several branches
rather than a single chain. To address this, the protocol defines a function called
the fork choice rule, F , which indicates, at each slot k, on which block to build or
attest based on the tree of all blocks, Tk, and the set of attestations,Ak. This block
is called the head of the canonical chain. To determine the head of the canonical
chain, the fork choice rule follows these steps:

1. Traverse the set of all attestations Ak = ∪ki=0ai, where ai is the set of attes-
tations sent during slot i. Keep only the last attestation from each attester.

2. For each attestation, add a weight1 to each block attested to, as well as to
all of its parents. This process gives an attestation weight to each block using
the tree of blocks Tk and the set of attestations Ak at slot k.

1 ↑ In the protocol, the weight added is proportional to the stake of the corresponding validator.
For simplicity, each validator is assumed to have the same stake in our analysis. Thus, without loss
of generality, we choose the stake to be one, so that counting the attestation weight is equivalent
to counting the number of attestations for this block or its descendants.
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3. Start from the genesis block and continue along the chain by following the
block with the highest attestation weight at each fork. Return the block that
has no children. This block is the head of the candidate chain.2

During the execution of the protocol, it is prescribed that the block proposer
of slot k executes the fork choice ruleF(Tk−1,Ak−1) to determine the parent of its
block. During the same slot, the attester should use the fork choice ruleF(Tk,Ak−1+

ρa) to determine which block to vote for. The notationAs−1+ ρa indicates that an
additional attestation weight of ρa is added on the block of the current round. The
addition of the attestation with ρa is called the proposer boost and is explained
below.

It is important to note that during periods of good network conditions, all
validators are likely to be aware of every block and attestation within the corre-
sponding slot. Therefore, all validators will have the same view of the attestation
weights, implying thatF will consistently return the same head when executed by
different validators. In our model, we assume ’perfect’ network conditions, mean-
ing that any message sent is assumed to be received immediately.
AttestationWeight Wepreviously introduced the concept of attestationweight,
which is crucial throughout our analysis. Let us now briefly expand on it. The at-
testation weight of a block is the sum of all attestations sent for this block, as well
as all attestations sent for the descendants of this block. Thismeans that an attes-
tation not only supports a single block but also the entire chain of blocks leading
to it.

We refer to the total attestation weight of a branch of blocks as the sum of all
attestations for that branch. It should be clear that the total attestation weight of
a branch is equivalent to the attestation weight of the first block in the branch.
Proposer Boost To mitigate the balancing attack [NTT21], in which malicious
validators withhold votes and release them at an opportune time to maintain a
fork indefinitely, the proposer boost was created3. However, this modification of
the protocol was found to be susceptible to new attacks involving equivocation
[NTT22], leading to an update where the fork choice rule no longer considers con-
flicting attestations from the same attester.

The proposer boost, denoted as ρ ∈ [0, 1), temporarily assigns ρa artificial at-
testations to a timely block, where a represents the total attestation weight per
slot. Thismechanism adds additional attestationweight to a block exclusively dur-
ing the slot in which it is proposed. Specifically, if a block is received early in slot k

2 ↑ We assume that the block with the highest attestation weight always starts from the genesis
block. In practice, the fork choice rule begins from the justified checkpoint with the highest epoch,
but we have simplified the protocol for our analysis.

3 ↑ See ethereum/consensus-specs/pull/2730
73

https://github.com/ethereum/consensus-specs/pull/2730


(within the first four seconds), ρa artificial attestations are temporarily added to it.
Currently, the proposer boost is set at 0.4, effectively adding 0.4×a attestations to
the block’s current weight. This adjustment influences the attestation weights so
that during slot k, the timely block Bk carries additional weight, thereby affecting
the fork choice rule.

8.8 6.8 1.8 1 0.8

slot k − 4 slot k − 3 slot k − 2 slot k − 1 slot k

ρa

10 8 3 1 2

slot k − 4 slot k − 3 slot k − 2 slot k − 1 slot k

Figure V.1: This figure illustrates an evaluation of the fork choice rule executed after a
timely block proposal in slot k. In this simplified representation, there are 2 attesters per
slot, so two attestations are sent per slot, each represented by a circle pointing to the block
being attested. Artificial attestations are created in the current slot k and add a weight of
ρa for the fork choice rule. At the beginning of slot k, a timely block is proposed, and the
proposer boost of ρa = 0.8(= 0.4 × 2) is applied. When slot k ends, the proposer boost
is cleared, and we observe the two attestations sent during the slot that followed the fork
choice rule.

An example of the fork choice rule with the proposer boost in action is illus-
trated in Figure V.1. The figure captures the chain at two different times during slot
k: right after the timely block proposal and at the end of the slot. Each time, we
show the weight of the blocks as computed by the fork choice rule. In our study,
we remain agnostic about the value of ρ to examine its effects across different
values.
Rewards The rewards for proposers and attesters are computed in a verifiable
manner. Based on the content of a block in the canonical chain, which includes
attestations and transactions, we can determine the rewards for the attesters re-
sponsible for these attestations and for the proposer who included them. The
proposer also earns rewards from transaction fees.

Validators are incentivized to participate in the process of adding new blocks
and attesting them through endogenous rewards inscribed in the protocol. A cru-
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cial factor in determining rewards is identifying the canonical chain. For instance,
a block proposed but not included in the canonical chainwill result in zero rewards
for the proposer. All rewards for block proposers and attesters can be determined
by examining the content of the blocks that form the canonical chain.

Because the proposer’s rewards depend on the attesters’ rewards, we first
introduce the rewards for attesters.

Attester Rewards. An attester is rewarded for its attestation based on two
factors: the timeliness and the correctness of its vote. Table V.1 indicates the reward
for an attester depending on these two factors.

Timeliness 1 slot ≤ 5 slots ≤ 64 slots
Incorrect attestation vote 20x/27 20x/27 6x/27

Correct attestation vote x 20x/27 6x/27

Table V.1: Attester’s rewards based on the inclusion of the attestation in the chain
and its blockvote.

Timeliness refers to the number of slots between the expected time for send-
ing an attestation and its actual inclusion in a block. The fastest possible inclusion
is 1 slot, meaning the attestation is included in the block of the subsequent slot.
An attestation is considered correct if its vote points to the most recent block
at the time of its slot that belongs to the canonical chain. Thus, both timeliness
and correctness depend on the actions and votes of other validators. Timeliness
depends on whether subsequent blocks include the attestation and eventually
belong to the canonical chain. Correctness is affected by the possibility that an
attester might vote for a block that is initially in the canonical chain but is later
not.

As the finalized chain grows, it will eventually determinewhich blocks belong to
the canonical chain. However, as shown in Table V.1, correctness only significantly
impacts the attester’s reward if the attestation is included in the following slot.
This may incentivize attesters to align their votes with the proposer of the next
slot, regardless of whether the block ultimately becomes part of the canonical
chain.

Proposer Rewards. For the proposer, there are two types of rewards: rewards
based on attestations and rewards based on transactions.4 Importantly, unlike in
Bitcoin, there is no coinbase transaction in each block guaranteeing a minimum
reward for proposing a block. The proposer receives a proportion of the reward
generated for each attestation it includes. Additionally, the proposer receives a
reward for each transaction included in its block in the form of transaction fees.

4 ↑ These rewards differ in that attestation rewards are received on the consensus layer, while
transaction fees are received on the execution layer, but this distinction does not impact our anal-
ysis.
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These rewards are formalized in subsection V.2.1, where the utility functions are
defined.

V.2 . Model & Game

Wemodel the EthereumPoS consensus protocol as a gamewhere eachplayer5
is either a proposer or an attester. Ideally, in the prescribed behavior, proposers
propose blocks, and attesters broadcast attestations. The game evolves over s
sequential slots. There is one proposer and a ∈ N attesters per slot, resulting in a
total of s proposers and as attesters. The value of s is unknown to the players.

As described in section II.3 we have twomain assumptions: (i) The gameoccurs
during a synchronous period, where the network is considered fully synchronous
with no latency, and (ii) The synchronous period follows an asynchronous period,
during which there may have been delays in information transmission. There-
fore, our game is set in the synchronous period, but the initial state is influenced
by events that occurred during the preceding asynchronous period. In this ini-
tial asynchronous period, blocks may have an uneven distribution of attestations
across slots, unlike in a permanently synchronous scenario.

Under these assumptions, the broadcast of the block proposal and attesta-
tions in our game are treated as atomic events. Thus, in each slot, there are three
distinct events:

1. Block proposal. The designated proposer for the slot proposes a new block,
selecting a previously existing block in the observed blockchain as its parent.
When a proposer prepares a block, they add all available transactions and
attestations to the block—i.e., all the transactions and attestations that are
not yet part of the blockchain. Once the transactions and attestations are
included, the block is proposed, meaning it is sent to the network.

2. Generation of transactions. Transactions are sent by users and observed by
proposers and attesters.

3. Attestations. After the block proposal for the slot, all attesters of the slot
choose which previously proposed block to attest and send their attesta-
tions simultaneously.

As detailed in section V.1, the protocol prescribes that proposers (and attesters)
should select as the parent (or as the block to attest) the block identified by the
fork choice rule, i.e., the head of the canonical chain.

These three events occur in sequence and are depicted in Figure V.2. Pro-
posers and attesters are financially motivated to participate in the protocol. It

5 ↑ We use the terms players and validators interchangeably.
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remains to be seen whether the protocol is incentive compatible; it is the case if
following the protocol maximize their gains.

Tx Tx

Block
proposition

Block
proposition

Attestations Attestations

Slot k Slot k + 1

Figure V.2: This schema represents the atomicity of the block proposal and the attestation
broadcast. In each slot, three phases occur in order: first, the block proposal; then, the
generation of transactions (which will be available for the proposer of the next slot); and
finally, all attestations are sent simultaneously.

The game

Bk−3 Bk−2 Bk−1 Bk

slot k − 3 slot k − 2 slot k − 1 slot k
ϕk

= 2
ϕk =

1

ϕk = 0

attk, i
ν(i,k) = 0

ν(i,k) = 1

ν(i,k) = 2
ν(i,k) = 3

Figure V.3: The actions available to an attester (blue) and a proposer (orange). The attester
i selects which block to attest with ν(i,k). The proposer selects the parent of its block with
ϕk. An example is shown where ϕk = ϕk−1 = ϕk−2 = 0.
We denote the set of players (the validators) as V = {P,A}, consisting of a

set of proposers P and a set of attesters A. Per slot, following the Ethereum pro-
tocol, there is exactly one proposer and a ∈ N attesters. Hence, the number of
proposers is |P | = s, and the number of attesters is |A| = as, with a, s ∈ N.

We model the interactions between proposers and attesters during s slots in
Ethereum PoS as a game. In each slot, the timeline of events is as follows: (i)
a block is proposed at the beginning of the slot,6 (ii) new transactions are pro-
posed, and (iii) all the attesters of the slot send their attestations simultaneously.
Therefore, the game is dynamic, with each stage corresponding to a slot. In each
slot, the attesters play a simultaneous game following the proposal by the slot’s

6 ↑ Every block thus receives the proposer boost in our model.
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proposer. Our interest lies in the actions that the proposers and attesters have,
which we now describe.

Actions.
When it is their turn (recall that each proposer/attester is uniquely assigned

to a slot, and this information is verifiable, allowing players to take action only
in their corresponding slot), a proposer must choose which block to extend, and
an attester must select which block to attest. The action will take the form of
a variable that indicates how many slots prior a proposer attaches its block to,
or an attester attests. More formally, the action of the proposer in slot k is to
assign a value to its variable ϕk ∈ N, corresponding to the difference between the
current slot and the slot of the block selected as the parent. Similarly, after the
block proposal in slot k, each attester i of slot kmust assign a value to its variable
νi,k ∈ N that represents the difference between the current slot and the slot of
the block being attested. We depict a subset of the action space in Figure V.3. In
more detail:

• At the beginning of slot k, a proposer p chooses the parent of its block Bk.
We denote this action by ϕk ∈ N. ϕk = l means that Bk ’s parent is Bk−1−l.
Thus, if Bk ’s parent is the block from the previous slot k − 1, then ϕk = 0.
The blocks contain two types of data: attestations and transactions. There
is no limitation on the number of transactions and attestations a block can
contain.7 A proposer always includes all available transactions and attesta-
tions. A transaction/attestation is considered available if it is not included in
any of the predecessors of Bk.

• After the block proposal in slot k, all attesters of slot k simultaneously choose
which block to attest. The attestation of attester i in slot k points to a specific
block determined by ν(i,k) ∈ N, i.e., the age of the block attested. ν(i,k) = l

means that the block Bk−l is the one attested by attester i in slot k. Thus, if
validator i attests for the block in the current slot k, then ν(i,k) = 0.

These actions are repeated in each slot. Note that not proposing or attesting to a
block is not an available action.

The last piece of data needed for our study is to determine whether a blockBk

eventually belongs to the canonical chain. In our model, this information is rep-
resented by χk ∈ {0, 1}, where χk = 1 if the block from slot k eventually belongs
to the canonical chain, and χk = 0 otherwise. This information becomes known
at the end of slot s, which marks the conclusion of our game.

It is important to note that for any slot k, always assigning a value of 0 to ϕk as
a proposer (or a value of 0 to ν(i,k) as an attester) is not the prescribed action. The
prescribed action is to follow the fork choice rule, as illustrated in Figure V.1.

7 ↑ This simplification is similar to the one made in [CKWN16].
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Strategies. A strategy of a player i is a function σi, which takes as input the
entire tree of blocks in the blockchain, as well as the attestations sent so far, and
produces as output a number, say s ∈ N. Since the only information available
are the tree of blocks and the attestations, the signature of a player’s strategy is
T ×A → N, where T is the set of blocks andA is the set of available attestations.

For the proposer of slot k, the prescribed strategy is σ(0,k)(Tk−1,Ak−1) = l,
where F(Tk−1,Ak−1) = Bk−1−l. The prescribed strategy for an attester i at slot
k is σ(i,k)(Tk,Ak−1) = l, where F(Tk,Ak−1 + ρa) = Bk−l. We say that a player
deviates from the prescribed protocol when their strategy produces a number
different from the slot of the block resulting from the fork choice rule.

A strategy profile σ = (σ0,1, . . . , σa,1, σ0,2, . . . , σa,2, . . . , σ0,s, . . . , σa,s) is a vector
where each component is a strategy of the corresponding player. We denote by
S the set of all strategy profiles and by S(i,k) the set of strategies for the player
of component (i, k). In this notation, players with indices (i, k) where i = 0 are
proposers, while players with indices (i, k) where 1 ≤ i ≤ a are attesters. For
clarity, we denote by (σ−i, σ

′
i) the strategy profile σ where, instead of playing withstrategy σi, player i deviates and uses strategy σ′

i instead. This applies to both
attesters and proposers.

It remains to define the reward of the players at the end of the game. At the
end of slot s, the payoff of all players is computed and given by the function u :

S → Rn+an (defined in subsection V.2.1). The payoff of each player is given by its
component in the reward vector, which depends on its type and is determined by
a reward function. In the remainder of the chapter, for clarity, for any strategy
profile σ, we write ui,j(σ) instead of u(σ)(i,k), where ui,j(σ) represents the payoff
of player (i, j), and player (0, j) is the proposer of slot j.

V.2.1 . Payoff

Attesters’ rewards vary depending on when their attestations are included in a
block and which block they attest to. This can incentivize them to align their attes-
tations with the behavior of future block proposers. Block proposers have a clear
incentive to accumulate the maximum transaction fees and lucrative attestations
to maximize their rewards. One strategy to achieve this is to fork the chain and
include in the new block all the attestations and transactions that do not belong
to the new chain. However, if the block does not end up in the canonical chain,
the block proposer will not receive any rewards. This incentivizes the proposer to
consider other behaviors, as we will see.

Given a strategy profile σ, the reward of attester i in slot k, player (i, k), de-
pends on a variable x > 0 set by the protocol and the slot in which the attestation
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is subsequently included in a block:

u(i,k)(σ) =


x if σ(i,k) sets ν(i,k) = ϕk+1 and χk+1 = 1,

20x/27 if χk+2≥···≥k+5 = 1, included in 2 to 5 slots following the attestation,
6x/27 = 2x/9 otherwise (if χ≥k+6 = 1).

(V.1)
Here, x > 0 and χn+1 denote the fact that the block of slot s + 1 belongs to

the canonical chain. The rewards for the attester can be understood as follows:
they are maximized when the attestation votes for the parent of the block in the
subsequent slot, and this block in the subsequent slot ends up in the canonical
chain.

The actual rewards for an attester are detailed in Table V.1. Note that the re-
ward is influenced by the correctness of the attestation only if it is included in the
block of the next slot. Additionally, if the block of slot k+1 does not end up in the
canonical chain, the attesters of slot k can never receive the maximum reward.

For the proposer of slot k, the reward function is given by:

u(0,k)(σ) = χk

n∑
j=n−ϕk

(
1

7

a∑
i=1

u(i,j)(σ) + fj−1

)
, (V.2)

The reward is the sum of attestation rewards and transaction fees over the
slots separating the block from its parent, multiplied by the factor that indicates
the block belongs to the canonical chain. Here, fn−1 > 0 represents the random
value of transaction fees generated during slot s − 1. The transaction fees are
the incentives that motivate proposers to include transactions in their block. The
proposer receives 1/7 of what the attesters receive for their attestations being
included in a block. The factor χs, indicating whether the block ends up in the
canonical chain, applies to the entire reward since, if the block is not included in
the finalized chain, it does not yield any rewards.

V.3 . Analysis

In this section, we explore a set of possible strategies for proposers and at-
testers. Each can either follow the obedient strategy or adopt a cunning strategy.
The obedient strategy is the one prescribed by the protocol. In contrast, the cun-
ning strategy may deviate from the protocol while exploiting the proposer boost
as a means to remain part of the canonical chain. We begin by introducing the
game-theoretic preliminaries necessary for our analysis.

V.3.1 . Preliminaries

To ensure clarity and self-containment, we redefinewell-knowngame-theoretic
concepts. These concepts are useful for categorizing strategy equilibria and ex-
ploring possible states of the game.
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Definition V.1 (Best response). A strategy σ∗
i is a best response for player i to the

strategy profile σ−i of the other players if:

ui(σ−i, σ
∗
i ) ≥ ui(σ−i, σi), ∀σi ∈ Si, (V.3)

where ui is the payoff function for player i, σ−i is the strategy profile of all other players,
and Si is the set of all possible strategies for player i.

Definition V.2 (Nash equilibrium). A strategy profile σ∗ = (σ∗
1, σ

∗
2, . . . , σ

∗
n) is a Nash

equilibrium if each player’s strategy σ∗
i is a best response to the strategies σ∗

−i of the
other players. Formally,

ui(σ
∗
−i, σ

∗
i ) ≥ ui(σ

∗
−i, σi), ∀σi ∈ Si and for all players i, (V.4)

where ui is the payoff function for player i, σ∗
−i is the strategy profile of all other

players in the equilibrium, and Si is the set of all possible strategies for player i.

In summary, the concept of a best response helps identify the optimal strategy
for a player given the strategies of the other players. Nash equilibrium defines a
state where each player’s strategy is a best response to the strategies of the other
players, ensuring no player can benefit from unilaterally changing their strategy.

V.3.2 . Obedient

As Carlsten et al. [CKWN16], we first describe the strategy of proposers and
attesters that act as prescribed by the protocol, we refer to them as obedient.
However in the case of Ethereum, the actions prescribed by the fork choice rule
are more complex compared to those described by Carlsten et al.

Obedient Proposer (σO
(0,k)):

Action: ϕk = l, where F(Tk−1,Ak−1)→ Bk−1−l.
The strategy of an obedient proposer at slot k is to propose a blockBk linked
to the block designated by the fork choice rule F(Tk−1,Ak−1)→ Bk−1−l.

Obedient Attester (σO
(i,k)):

Action: ν(i,k) = l (Block attested is Bk−l.)
The obedient attester strategy of attester i is to attest to the block desig-
nated by the fork choice rule F(Tk,Ak−1 + ρa)→ Bk−l.
We denote by σO

(i,j) the obedient strategy of player (i, j) and by σO the strategy
profile where all players act obediently.

When proposers and attesters follow the obedient strategy, we can evaluate
the rewards each of themwill receive. Since they will all follow the fork choice rule

81



and there are no delays, no forks will occur, and attesters will attest to the block
of their slot. Moreover, each attestation will be included in the following slot and
will be correct. For proposers and attesters following the actions prescribed by
the protocol, the rewards are as follows:

• For each attester i following the obedient strategy, the reward is: u(i,k)(σ
O) =

x, where σO is the strategy profile in which all proposers and attesters are
obedient.

• For the proposer of slot k, the reward is: u(0,k)(σ
O) = ax

7
+ fk−1.

With this strategy profile, attesters obtain the maximum reward attainable (Equa-
tion V.1). However, there is no maximum reward for a block proposer, as their
rewards increase the more ancient their block’s parent is.

V.3.3 . Cunning Strategy

We now examine a strategy that could yield more rewards for validators than
simply following the protocol. In some situations, deviating from the protocol can
allow validators to accumulate more rewards without incurring penalties. We re-
fer to this as the cunning behavior. For a proposer, the strategy involves choosing
a block parent for its proposal that maximizes its rewards.

As the block parent’s slot is further away from the new block, the proposer
can include more transactions and attestations to increase its rewards. The ideal
block parent, in theory, would be the genesis block. However, for the block to
actually yield rewards, it must become part of the canonical chain. The cunning
proposer will always propose a block that is considered the head of the canonical
chain during its slot.

For instance, a cunning proposer will not strictly follow the fork choice rule
to determine its block’s parent. Instead, it will subtly test whether it can choose
an older block as the parent while still having its block become the head of the
canonical chain. The block that maximizes rewards—typically the oldest possible
block—will be selected as the parent by the cunning proposer.

Cunning Proposer (σC
(0,k)):

Action: ϕk = max{x ∈ N : F(Tx,Ax−1 + ρa) = Bk}

The cunning proposer’s block extends the block that leaves the most avail-
able transactions and attestations while still being selected as the head of
the canonical chain by the fork choice rule (for attesters in the same slot)
due to the proposer boost ρa.
We denote by σC

(0,k) the cunning strategy of the proposer in slot k.
Remark V.1. The obedient and the cunning strategy can result in the same action.
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It is important to note that while the cunning and obedient strategies are dis-
tinct, the actions resulting from them can sometimes be identical. Indeed, the
action taken by a cunning proposer is to propose a block with the oldest possible
parent while still ensuring the block is designated by the fork choice rule for the
attesters of the slot. However, if the oldest possible parent is the same block ini-
tially designated by the fork choice rule, the action will align with the protocol, just
as it would under the obedient strategy. In this sense, we say that a cunning player
acts obediently if their action is the one prescribed by the protocol. Conversely,
we say they act cunningly if the action taken differs fromwhat is prescribed by the
protocol, making the cunning strategy truly distinct from the obedient strategy.
Observation V.1 (Cunning condition). The divergence between cunning and obedi-
ent proposer behavior occurs when the branch containing the block designated by the
fork choice rule, with a total attestation weight wf , has a concurrent branch with a
total attestation weight wg such that:

wf − wg ≤ ρa. (V.5)
We call this inequality the cunning condition.

First, it is clear that wf is always greater than wg, as the block designated by
the fork choice rule is on the branch with a total attestation weight of wf . To
understand the cunning condition, we consider two illustrations:

1. The first, and less intuitive, case is presented in Figure V.4. This showcases
the scenario where wg = 0. A branch can consist of many blocks, a single
block, or, in this case, no block at all.
The newly proposed block can become the head of the canonical chain by
attaching itself to the first block with more than ρa attestation weight. If the
block designated by the fork choice rule is on a branch with a total attes-
tation weight less than ρa, the cunning behavior differs from the obedient
behavior.

2. Another representation of the cunning condition is shown in Figure V.5. Here,
there are twodistinct branches, eachwith one block. The branch of the block
designated by the fork choice rule has an attestation weight ofwf = 3, while
the concurrent branch haswg = 2. In this case, where ρa = 1.2, the condition
is met, allowing the proposer to act cunningly.

It should be noted that without the proposer boost, the cunning proposer
strategy would never differ from the obedient proposer strategy. This strategy
relies on the advantage provided by the proposer boost to ensure that its block
becomes the head according to the fork choice rule.

Conversely, and intuitively, as the proposer boost increases, the opportunity
for the cunning block proposer to act cunningly arisesmore frequently in the case
all attesters are obedient.
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9 5 1

slot k − 3 slot k − 2 slot k − 1 slot k

10.2 6.2 1 1.2

slot k − 3 slot k − 2 slot k − 1 slot k
ϕk =

1

ρa

Figure V.4: Cunning proposer (0, k) deviating from the prescribed protocol with ρa =

1.2(= 0.4× 3) when the block designated by the fork choice rule has an attestation weight
less than ρa.

Best response of a proposer among s − 1 obedient proposers and as obedi-
ent attesters. We first study the behavior of one proposer when all others are
obedient with respect to their designated slot. In the case in which the proposer
is associated to the first slot of the game, for this proposer the cunning strategy is
the best response and the proposer deviates from the protocol if the cunning con-
dition holds (Lemma V.1). In the case the proposer is associated to a subsequent
slot of the game, then the two strategies obedient and cunning are equivalent;
this means that the proposer will follow the protocol (Lemma V.2).
Lemma V.1. When all other validators are obedient, the cunning proposer strategy is
a best response.

Proof. Let us denote by ϕC
k and ϕO

k the actions taken by proposer (0, 0) under the
cunning strategy and the obedient strategy, respectively. The cunning proposer
strategy differs from the obedient strategy when ϕC

k > ϕO
k . Considering that therest of the validators follow the obedient strategy, a proposed block that becomes

the head of the chain at slot k will end up in the canonical chain (χk = 1). By
construction, ϕC

k ≥ ϕO
k , and in both cases, the proposed block will be the head ofthe canonical chain and thus belong to the canonical chain (χk = 1). Based on the

definition of u(0,k) (cf. Equation V.2), the reward increases as the sum increases.
This implies that u(0,k)(σ

O
−(0,k), σ

C
(0,k)) ≥ u(0,k)(σ

O
−(0,k), σ

O
(0,k)).

Let us note that when everyone else is obedient, the cunning strategy can only
differ from the obedient strategy for the first proposer. All subsequent proposers
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9 2 3

slot k − 3 slot k − 2 slot k − 1 slot k

10.2 3.2 3 1.2

slot k − 3 slot k − 2 slot k − 1 slot k
ϕk = 1

ρa

Figure V.5: Cunning proposer (0, k) deviating from the prescribed protocol with ρa =

1.2(= 0.4 × 3) when two blocks have an attestation weight difference of less than ρa, and
one of them is designated by the canonical chain.

will follow the protocol regardless of whether they follow the cunning or obedient
strategy because the cunning condition is never satisfied. We formalize this in the
following observation:
Lemma V.2. For the strategy profile σO

−(0,i) where all other validators follow the obe-
dient strategy, ϕC

i ̸= ϕO
i only if i = 0, where ϕi is the action of proposer (0, i).

Proof. This can be explained because ourmodelmakes strong assumptions about
synchronous network conditions. When considering that all attesters are obedi-
ent, this implies that in each slot, all attesters will send the same attestation. As
a result, every new block will have an attestation weight that is a multiple of a. If
the first proposer is obedient, it attaches its block to the branch with the highest
attestation weight wf . The obedient attesters will attest to it, adding a weight of
a. This makes the cunning condition (Observation V.1) impossible for subsequent
proposers, as wf + a−wg ≥ a. Nevertheless, the first proposer can act cunningly
since the network’s state before the first slot is not predetermined, leaving any
arrangement of blocks and attestation weights possible.
Best response of a proposer among s− 1 cunning proposers and as obedient
attesters. We study the behavior of one proposer when all other proposers are
cunning and attesters are obedient. We have two cases:

• ρ < 1/2. If the proposer is associated with the first slot of the game, the
cunning strategy is the best response, and the proposer will deviate from
the protocol if the cunning condition holds (Lemma V.3).
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If the proposer is associated with any subsequent slot in the game, the cun-
ning condition will never hold. In this case, the obedient and cunning strate-
gies are equivalent, leading the proposer to act as prescribed by the protocol
(Lemma V.11).

• ρ ≥ 1/2. In this case, the cunning condition can apply to multiple consecu-
tive proposers. If the cunning condition does not hold for the second pro-
poser, then the cunning strategy is the best response for the first proposer
(Lemma V.4), causing the first proposer to deviate from the protocol.
If the cunning condition holds for more than just the first proposer, the
cunning strategy becomes the best response if, and only if, the expected
rewards gained from acting cunningly and hoarding the rewards over the
two previous slots exceed the rewards from the most recent slot alone.
(Lemma V.5). In this scenario, each proposer deviates from the prescribed
protocol.

Lemma V.3. The cunning proposer strategy is a best response for a proposer when
all other proposers are cunning and attesters are obedient, provided ρ < 1/2. If the
cunning condition holds, it will only do so for the first proposer, causing this proposer
to deviate from the protocol.

Proof. With ρ < 1/2, only the first proposer can act cunningly. Let’s assume the
first proposer acts cunningly, meaning that the cunning condition is satisfied. The
maximum gap between wf and wg for the first proposer to act cunningly is ρa,
such that wf = wg + ρa. After the attestations sent by the obedient attesters in
the first slot, the attestation weight of the branch designated by the fork choice
rule becomes wg + a. For the second proposer to act cunningly, it must hold that
wg + a − wf ≤ ρa (cunning condition for the second proposer). Substituting wf

with the maximum possible gap from wg, this condition implies that the second
proposer can act cunningly if and only if:

wg + a− (wg + ρa) ≤ ρa

1

2
≤ ρ.

(V.6)

Thus, with cunning proposers and obedient attesters, only the first proposer can
act cunningly, deviating from the obedient action. For the first proposer, acting
cunningly will yield the maximum rewards.

In fact, since only the first proposer can act cunningly when ρ < 1/2, the obe-
dient strategy remains a best response for the rest of the proposers, even when
all other proposers are cunning and attesters are obedient.
Lemma V.4. The cunning proposer strategy is a best response for a proposer when
all other proposers are cunning and attesters are obedient, if ρ ≥ 1/2 and the cunning
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condition does not hold for the second proposer. If the cunning condition holds, it will
only do so for the first proposer, causing this proposer to deviate from the protocol.

Proof. If the attestation weight of the branch f designated by the fork choice rule,
wf , and the attestation weight wg of a concurrent branch g are such that wg +

a − wf > ρa, the second proposer cannot act cunningly with obedient attesters
(cunning condition false for the second proposer). We previously showed that if
the first proposer is cunning and attaches its block to the concurrent chain g, the
obedient attesters will follow, increasing the weight of g towg+a. By ensuring that
wg + a − wf > ρa, we prevent the second proposer from changing the canonical
chainwith the proposer boost. Thus, this condition ensures that the first proposer
can be the only one to act cunningly, and in this case, the best response is the
cunning strategy.
Lemma V.5. When all proposers are cunning, attesters are obedient, and ρ ≥ 1/2,
the cunning strategy is a best response if the cunning condition holds for the second
proposer and:

fk−2 − fk−1

2
≥ ax

27
, (V.7)

where fk denotes the transaction fees emitted at slot k.

Proof. If the cunning condition is true for the second proposer (wg + a− wf ≤ ρa

) it can attach its block to the branch with attestation weight wf since the gap
with the concurrent chain of weight wg + a is less than the proposer boost ρa.
The obedient attesters of the second slot will add an attestation weight of a to
wf . Following this, the gap between the attestation weights of the two concurrent
branches will always remain less than ρa, leading all cunning proposers to attach
their blocks two slots prior.

We illustrate in Figure V.6 the "bouncing" that will unfold due to cunning pro-
posers. Their resulting reward will be affected, as the repeated bouncing of the
canonical chain between the two branches will cause the blocks from each chain
to become canonical with a probability of 1/2. No attesters will receive the maxi-
mum reward since they would never attest in accordance with the following pro-
poser. The reward of the proposer (0, k) following the cunning strategy will thus
be:

u(0,k)(σ−(0,k), σ
C
(0,k)) =

1

2

(
a

7
· 20x
27

+ fk−2 +
a

7
· 20x
27

+ fk−1

)
=

a

7
· 20x
27

+
fk−2 + fk−1

2
,

(V.8)

with σ−(0,k) being the strategy profile in which every proposer is cunning and every
attester is obedient.
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Being cunning is a best response when wf + ρa ≥ a, if and only if:
u(0,k)(σ−(0,k), σ

C
(0,k)) ≥ u(0,k)(σ−(0,k), σ

O
(0,k))

⇔ a

7
· 20x
27

+
fk−2 + fk−1

2
≥ ax

7
+ fk−1

⇔ fk−2 − fk−1

2
≥ ax

27
,

(V.9)

where σ−(0,k) is the strategy profile in which every proposer is cunning and every
attester is obedient, and σO

(0,k) is the obedient strategy. Therefore, if fk−2 is not suf-
ficiently greater than fk−1, the best response is the obedient strategy; otherwise,
the best response is the cunning strategy.

Since transaction fees are positive, they cannot continue to decrease indef-
initely with each slot. This implies that when the cunning condition holds for
the second proposer, eventually one proposer will follow the obedient strategy,
thereby stopping the fork.

X ρa ρa

slot k − 2 slot k − 1 slot k

X ρa+ ρa a ρa

slot k − 2 slot k − 1 slot k slot k + 1

Figure V.6: X indicates that the value of the block is irrelevant. As a reminder, the pro-
poser boost is equivalent to an attestation weight of ρa for a new block (in orange). In
this scenario, the proposer of slot k is cunning and all the attesters are obedient. The pro-
poser of slot k takes advantage of the proposer boost to become the head of the canonical
chain. The proposer of slot k + 1 can cunningly become the head of the canonical chain
by attaching its block to the block from slot k − 1 and can become the head of the chain
only if 2ρa ≥ a, which means ρ ≥ 1/2. In conclusion, a proposer boost greater than 1/2

can create a situation in which multiple forks occur in the presence of cunning proposers
and obedient attesters.

Best response of an attester among s cunning proposers and an − 1 obe-
dient attesters. Until now, we have described a scenario where all proposers
follow the cunning strategy, and attesters follow the obedient strategy, leading
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to a potentially long fork in which attesters pay the price for the cunning behav-
ior of proposers and do not receive the maximum reward. Let us now introduce
the cunning attester strategy, which takes advantage of knowing when the cun-
ning proposer strategy is the best response to act accordingly and secure a higher
reward.

Cunning Attester (σC
(i,k)):

Action: ν(i,k) = σC
0,k+1(Tk,Ak−1 ∪ AO

k ).
The cunning attester (i, k) attests to the parent of the block in slot k + 1,
assuming that all other attesters in slot k will act obediently (AO

k ) and that
the proposer of slot k + 1 will act cunningly. The action is the same as the
following cunning proposer’s, i.e., ν(i,k) = ϕC

k+1.
We found that when ρ < 1/2, the obedient attester strategy and the cunning

attester strategy are equivalent. This implies that attesters will follow the protocol
(Lemma V.6) when ρ < 1/2. Moreover, if ρ ≥ 1/2, when all proposers are cunning
and attesters are obedient, the best response is the cunning attester strategy.
When the cunning condition holds for the second proposer the cunning attester
strategy will deviate from the protocol. Otherwise, all attesters will follow the pro-
tocol (Lemma V.7).
Lemma V.6. When ρ < 1/2, the obedient attester strategy and the cunning attester
strategy are equivalent.

Proof. This result stems from the fact that when ρ < 1/2, only the first proposer
can act conspicuously cunningly,meaning they deviate from theprotocol (cf. proof
of Lemma V.3). Therefore, if all subsequent proposers act similarly to obedient
proposers and follow the protocol, attesters will never have the opportunity to
act cunningly and will follow the protocol as well.
Lemma V.7. When ρ ≥ 1/2 and all proposers are cunning while all other attesters
are obedient, the cunning attester strategy is a best response. If the cunning condition
holds for the second proposer, the cunning attester strategy will lead the attester to
deviate from the protocol. Otherwise, all attesters will follow the protocol.

Proof. For attesters to exhibit cunning behavior, more than just the first proposer
must act cunningly. This occurs if and only if the cunning condition holds for the
second attester.

The reward for attester (i, k) following the cunning attester strategy σC
(i,k), whileall other attesters are obedient and proposers are cunning σ−(i,k), is:

u(i,k)(σ−(i,k), σ
C
(i,k)) =

47x

54
. (V.10)
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Since the attester’s reward depends on when their attestation is included in a
block, it also depends on whether the blocks belong to the canonical chain. Each
attestation is included in the next two blocks, which are on different chains, each
having a 1/2 probability of being in the canonical chain. This gives the cunning
attester a reward of 1

2
(x + 20x

27
). Following the obedient attester strategy leads to

a reward of 20x
27
, as in both blocks, the attestation will either attest to the wrong

block or be included too late. Thus, u(i,k)(σ−(i,k), σ
C
(i,k)) ≥ u(i,k)(σ−(i,k), σ

O
(i,k)).

Best response of an attester among s cunning proposers and an− 1 cunning
attesters. We study the behavior of an attester when all proposers are cunning
and other attesters cunning. In this case the best response is the cunning attester
strategy. This strategy only deviates from the protocol for the attesters of the first
slot if the cunning condition holds for the second proposer. However this devia-
tion will prevent the cunning condition to hold for the third proposer, effectively
making all subsequent validators to follow the protocol.
Lemma V.8. The cunning attester strategy is a best response for an attester when
all validators are cunning. If the cunning condition holds for the second proposer,
the cunning attester strategy will lead the attesters of the first slot to deviate from the
protocol. Otherwise, all attesters will follow the protocol.

Proof. For attesters to exhibit cunning behavior, more than just the first proposer
(0, 0)must act cunningly. This occurs if the cunning condition holds for the second
proposer (0, 1).

In this case, all attesters of the first slot will expect proposer (0, 1) to act cun-
ningly and attach itself to the block designated by the fork choice rule at the be-
ginning of the game (F(T0,A−1)), leading them to attest to the head of the branch
with total attestation weight wf . This scenario is represented in Figure V.7. As a
result, the block proposed by the first proposer (0, 0) will not be attested by the
attesters. The block proposed by (0, 1) will belong to the canonical chain since no
other fork is possible for the subsequent proposers. The gap between wf + a and
wg is too large for the proposer boost to enable further cunning actions, the cun-
ning condition cannot hold anymore. The attesters (i, 0) of the first slot, who act
in accordance with proposer (0, 1), receive themaximum reward. Proposers (0, 2)
and beyond will not have the opportunity to act cunningly, nor will the remaining
attesters, resulting in all attesters receiving the maximum reward.

Best response of a proposer among s− 1 cunning proposers and as cunning
attesters. Now that the attester can also act cunningly, let us evaluate the best
response of proposers. We found that for ρ < 1/2, as usual, only the first pro-
posers can deviate from the prescribed protocol. Doing so will yield more reward
hence the cunning strategy is the best response for the first proposer.
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X ρa ρa

slot k − 2 slot k − 1 slot k

X ρa+ a +ρa 0 ρa

slot k − 2 slot k − 1 slot k slot k + 1

Figure V.7: X indicates that the value of the block is irrelevant. In this scenario, all val-
idators act cunningly. The proposer of slot k attaches its block to the block from two slots
prior. The cunning attesters in slot k attest to the block from slot k − 1 to align with the
following proposer’s strategy. The proposer of slot k + 1 is then compelled to attach its
block to the block from slot k − 1. As a reminder, the proposer boost is equivalent to an
attestation weight of ρa for a new block (in orange). This results in the proposer of slot k
forking alone and receiving no rewards.

When ρ ≥ 1/2, there are two cases. If the cunning condition does not hold
for the second proposer, the best response is the cunning proposer strategy and
only the first proposer has the opportunity to deviate from the protocol. On the
other hand, if the cunning condition holds for the second proposer, all attesters
of the first slot will deviate from the protocol and not attest the block of the first
proposer. This makes the obedient proposer strategy the best response for the
first proposer aswell as all other proposers that will follow the protocol regardless
of the first proposer strategy when attesters are cunning.
Lemma V.9. If ρ < 1/2 and all validators are cunning, the best response for the first
proposer is the cunning strategy. If the cunning condition holds, it will only do so for
the first proposer, causing this proposer to deviate from the protocol.

Proof. This follows directly from Lemma V.6 and Lemma V.3.
Lemma V.10. If ρ ≥ 1/2 and all validators are cunning, the best response for a pro-
poser is cunning, if the cunning condition does not hold for the second proposer. Oth-
erwise, the obedient proposer strategy is the best response.

Proof. If the cunning condition holds for the second proposer, Lemma V.8 de-
scribes how the scenario would unfold. A possible outcome is represented in Fig-
ure V.7. The result is that, for the first proposer, the best response is the cunning
strategy only if the second proposer cannot act cunningly.
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Otherwise, as described in the proof of Lemma V.8, if the first proposer re-
mains cunning, they will receive zero reward. All other proposers follow the pro-
tocol regardless of the strategy of the first proposer.

A counterintuitive finding is that with a higher proposer boost ρ > 1/2, the
obedient proposer strategy can be favored. One reason is that the transaction
fees gainedmay not be enough to compensate for the probability of not belonging
to the canonical chain. Another reason is that being cunning can backfire if the
attesters are also cunning, leading to the cunning block not being attested at all.
The assurance of belonging to the canonical chain and the available rewards can
be sufficient to make the obedient strategy the favored response.
Eventual Incentive compatibility We have seen that the strategy profile in
which all validators are obedient and follow the prescribed protocol is not a Nash
equilibria, participants can gain from changing strategy. In this sense the consen-
sus protocol and more precisely the fork choice rule is not incentive compatible.

Nonetheless, we now show that in all equilibria, there exists a slot after which
all validators follow the prescribed protocol (Theorem V.1).
Lemma V.11. Once a proposer follows the protocol, all subsequent validators do so.

Proof. A proposer (0, j) following the protocol implies that if all attesters of its
slot also follow the protocol, the next proposer cannot deviate. This is because all
obedient attesters in that slot would give an attestation weight of a to the block
proposed by (0, j). Since it extends the branch designated by the fork choice rule,
with an attestation weight wf ≥ wg, where wg is the attestation weight of any
concurrent branch, adding a to wf ensures that no proposer deviate from the
protocol (cf. Observation V.1).

Knowing this, the attesters (i, j) of slot j will follow the protocol as well. No
validators can deviate from the protocol after a block is attached to the head of
the canonical chain.
Theorem V.1. In all Nash equilibria, there is a slot after which all validators follow
the protocol.

Proof. We know that once a proposer acts obediently, all subsequent validators
do (Lemma V.11).

If there is an equilibrium in which one proposer follows the obedient strategy
and extends the head of the canonical chain, the theorem is valid. We now look
at proposers all following the cunning strategy. When all proposers follow the
cunning strategy, to have more than the first to effectively act cunningly we need
to havewg+a−wf ≤ ρa otherwise the second proposerwill extend the head of the
canonical chain, validating the theorem. Then in the case of the fork continuing
with each proposer thus attaching their block two slots prior, this makes each of
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their blocks have an expectation of 1/2 to belong to the canonical chain (χ = 1/2).
As computed in Lemma V.4, their reward will thus be in the form of: fk−2− fk−1 ≥
α, where α is a positive number that depends on the attestation included and
their reward associated. No matter the value of α, even taking α = 0, a proposer
will have as best response to be cunning only if the transaction fees gained with
a probability 1/2 by being cunning are at least superior to the transaction fees
obtained with certainty otherwise.

This condition cannot be true for all proposers as the transaction fees are pos-
itive and discrete. Eventually, a proposer (0, k) will see previous transaction fees
where fk−2 < fk−1. The best response of proposer (0, k) is to act obediently.

We can conclude that under perfect network conditions, regardless of the pro-
poser boost, the obedient strategy will eventually prevail.

V.4 . Conclusion

In this chapter, we have analyzed the Ethereum PoS protocol through a game-
theoretic lens, particularly focusing on the incentive mechanisms that influence
the behavior of proposers and attesters. Our findings reveal that the current de-
sign leads rational validators to all eventually adhere to the protocol. Specifically
the proposer boost mechanism does not permit prolonged forks while having
good network conditions. Surprisingly, a high proposer boost (superior to 1/2)
can even prevent cunning behavior.

This initial analysis focused on two strategies: cunning and obedient. Future
research will expand to include a broader range of strategies. Additionally, ex-
ploring different assumptions about network conditions, such as communication
with more realistic delays, is expected to significantly impact the results.
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Chapter VI

Conclusion and Perspectives

D
rivenby the need to evaluate the impact of incentivemechanismsonblockchain
robustness, we embarked on this thesis. Traditional distributed systems
approaches, which consider honest and Byzantine participants, often over-

look incentives, while game theory focuses on incentives but typically disregards
blockchain robustness. Our work aims to bridge this gap by examining the case
study of Ethereum PoS.

Ethereum PoS is unique for two reasons: it has a very active research commu-
nity, and its protocol is a hybrid of Nakamoto-style and BFT-like consensus. These
features make it an ideal subject for studying complex ideas that apply broadly to
other blockchain systems, as most blockchains incorporate at least one of these
fundamental components.

Our analysis began with a detailed examination of the Ethereum PoS protocol.
The complexities of this protocol necessitated a dedicated paper [PAT23] focused
on its description. In this work, we redefined the crucial properties of safety and
liveness, which are fundamental to blockchain robustness and serve as the foun-
dation for our entire study. We formalized the protocol based on its code which
we transcribed in pseudo-code. We then revealed that the protocol was safe and
the liveness was probabilistic due to a possible attack we identified.

We then shifted our focus to the incentive mechanisms within the Ethereum
PoS protocol. While our first analysis was in line with traditional distributed sys-
tems approaches and did not consider incentives, the second part of our work
[PAT24a] explored the inactivity leak, an incentive mechanism that directly im-
pacts the protocol’s robustness. Our results show that the mechanism penalizing
seemingly inactive validators to restore liveness in times of partitions could be
subverted by Byzantine validators to break the safety.

The final part of ourwork addresses the behavior of rational participantswithin
the protocol, bridging the gap between distributed system and game theoretic
analysis. We investigated whether proposers and attesters could financially ben-
efit from deviating from the protocol, specifically by exploiting the fork choice rule
to their advantage. The strategy exploiting the fork choice rule is called cunning
while the strategy that adheres to the protocol is called obedient. Our findings
state that for any equilibrium, eventually all validators will behave obediently.
There are two reasons for this. First we assume perfect network conditions dur-
ing which messages sent are instantaneously received by all participants. Sec-
ondly, not following the obedient strategy can be less rewarding as it can imply
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that blocks do not eventually end up in the canonical chain, which would yield
zero rewards in this case.

Our contributions highlight the critical role of incentivemechanisms in blockchains.
Rewards and penalties can either prevent misbehavior, as shown in our game-
theoretic analysis, or be detrimental if exploited by Byzantine participants, as il-
lustrated in our analysis of the inactivity leak. This work contributes to the ef-
fort of making blockchain protocols more comprehensible. The complexity of the
Ethereum protocol is undeniable, and we hope to serve as a resource for a de-
tailed, formalized explanation of the protocol. While we have striven to provide
an accurate description of the consensus mechanisms, the examination of how
transactions are processed and executed remains. This constitutes an entire work
on its own.

Although our work focuses on a single blockchain, the insights gained offer
valuable guidance for the design of future protocols. Addressing the intersection
of distributed systems and game theory is both recent and challenging. While
Abraham et al. [AAH11] introduced the idea of combining these fields in 2011, the
complexity involved has led to limited research in this area. One of our goals was
to study the protocol with three types of agents: honest, Byzantine, and ratio-
nal. However, the complexity of the protocol made adding this refinement to the
participant model too daunting and, we believe, unfeasible.

Future work should aim to develop simpler protocols that remain robust in the
presence of honest, Byzantine, and rational players. Our work provides a frame-
work for evaluating protocols. However, a limitation of this thesis is the absence
of a proposed solution to the problems identified.

Blockchain technology is still in its early stages, and we hope that our contri-
bution will aid its continued development.
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Appendix A

Mathematical Elaborations

A.1 . Discrete case inacivity score during a probabilistic bouncinc attack.

This gives two Bernoulli laws where the probability to have kmoves to the left
at time n are respectively:

PX(k, n) =

(
n

k

)
pk0(1− p0)

n−k (A.1)

PY (k, n) =

(
n

k

)
(1− p0)

kpn−k
0 (A.2)

We can then compute the convolution that will give us the probability law to
be:

PX+Y (s, 2n) = [PX + PY ](s) =
n∑

k=0

PX(k) ∗ PY (s− k) (A.3)

=
n∑

k=0

(
n

k

)
pk(1− p0)

n−k

(
n

s− k

)
(1− p0)

k−spn−s+k
0 (A.4)

=
n∑

k=0

(
n

k

)(
n

s− k

)
pn+2k−s
0 (1− p0)

n+s−2k (A.5)
We are interested in the inactivity score in an attempt to study the evolution of

stake of honest validators. To determine the stake we have to give a continuous
function for the probability of the inactivity score.
Continuous case There are several ways to approach the continuous case. We
use the same technique as before using a convolution. Starting by saying that a
random walk follows a Gaussian’s distribution when time is big using the Central
limit theorem. Knowing that the expectation of the two laws PX and PY are (5p0−
4)t and (1− 5p0)t and their standard deviation is both 25p0(1− p0)t, we have:

PX(x, t) =
1√

π50p0(1− p0)t
e
− (x−(5p0−4)t)2

50p0(1−p0)t (A.6)
PY (x, t) =

1√
π50p0(1− p0)t

e
− (x−(1−5p0)t)

2

50p0(1−p)t (A.7)
PX+Y (s, t) =

∫
PX(x, t)PY (s− x, t)dx (A.8)

Which gives:
PX+Y (x, t) =

1√
π100p(1− p0)t

e
− (x−3t/2)2

100p0(1−p0)t (A.9)
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A.2 . From Gaussian white noise to log-normal distribution

In order to be able to find the probability of s, we need to change referential to
stop I from drifting with time. To do so we start by noticing that with the change
of variables u = −226 ln |s| this implies du

dt
= −226

s
ds
dt

= I . We now simplify what we
looking for by introducing ũ and Ĩ the functions resolving these equations:{

I = Ĩ + V t

u = ũ+ 1
2
V t2 − 226 ln(s0)

(A.10)
Where s0 = 32, for the initial stake. We can write the probability of Ĩ as:

ϕ(Ĩ , t) =
1√
4πDt

e−
Ĩ2

4Dt (A.11)
Looking at the derivative of ũ we get:

dũ

dt
=

du

dt
− V t = I − V t = Ĩ . (A.12)

Hence we find dũ/dt = Ĩ . Ĩ being a Brownian motion, ũ is called an integrated
Brownian motion. It is a well-known problem and this leads to :

P (ũ, t) =
1√

4
3
πDt3

exp

(
− ũ2

4
3
Dt3

)
. (A.13)

Where :
ũ = u− V t2

2
+ 226 ln(s0) (A.14)

We have that dũ = −226 ds
s
, then the only remaining step is using the factP (s) =

P (ũ)|dũ
ds
|, hence:

P (s) =
226

s
P (ũ = −226ln(s/s0)− V t2). (A.15)

Thus, the probability of finding a stake s at time t for an honest validator during
the probabilistic bouncing attack is:

P (s, t) =
226

s
√

4
3
πDt3

exp

(
−(226 ln(s/32) + V t2/2)2

4
3
Dt3

)
(A.16)

WithD and V , the diffusion and the velocity. In our case V = 3/2 andD = 25p0(1−
p0). The stake follows a log normal distribution.

The density of log normal distribution is:
fX(x;µ, σ) =

1

xσ
√
2π

exp

(
−(lnx− µ)2

2σ2

)
. (A.17)

The cumulative distribution function of the log-normal distribution is the fol-
lowing:

FX(x;µ, σ) =
1

2
+

1

2
erf

[
ln(x)− µ

σ
√
2

]
. (A.18)
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